The High Presssure H_{3}S Structure
You can now:

(Duan, 2014)
predicted that this structure of H_{3}S would be a conventional
superconductor at temperatures above 191K and a pressure of
200GPa. (Drozdov,
2015) found a superconductor in the hydrogensulfur
system at 203K and pressure near
200GPa. (Bernstein,
2015) showed that this structure is the ground state of
the HS system near 200GPa.

Both La_{2}O_{3} and
Nd_{2}O_{3} can form in this structure under
ambient condtions, but in both cases the Oxygen atoms only
50% of the (6b) Wyckoff positions.

We have used the fact that all vectors of the
form \( \pm \frac{a}2 \hat{x} \pm \frac{a}2 \hat{y} \pm
\frac{a}2 \hat{z} \) are primitive vectors of the
bodycentered cubic lattice to simplify the positions of
some atoms in both lattice and Cartesian coordinates.
 Prototype:
H_{3}S
 AFLOW Prototype: None
 Pearson Symbol:
cI8

Strukturbericht Designation:
None

Space Group:
Im3m

Number:
229

Reference:
(Duan, 2014)

Other Compounds with this Structure:
La_{2}O_{3}, Nd_{2}O_{3}
In both cases the Oxygen atoms only partially occupy the
(6b) Wyckoff positions
Bodycentered Cubic
Primitive Vectors:
\[
\begin{array}{ccc}
\vec{a}_1 & = &  \frac12 \, a \, \hat{x} + \frac12 \, a \, \hat{y} + \frac12 \, a \, \hat{z} \\
\vec{a}_2 & = & ~ \frac12 \, a \, \hat{x}  \frac12 \, a \, \hat{y} + \frac12 \, a \, \hat{z} \\
\vec{a}_3 & = & ~ \frac12 \, a \, \hat{x} + \frac12 \, a \, \hat{y}  \frac12 \, a \, \hat{z} \\
\end{array}
\]
Basis Vectors:
\[
\begin{array}{ccccccc}
& & \mbox{Lattice Coordinates} & & \mbox{Cartesian Coordinates} &
\mbox{Wyckoff Position} & \mbox{Atom Type} \\
\vec{B_{1}} & = &
0
& = &
0
& (2a) & \mbox{S} \\
\vec{B_{2}} & = &
\frac12 \, \vec{a_2}
+ \frac12 \, \vec{a_3}
& = &
\frac12 \, a \, \hat{x}
& (6b) & \mbox{H} \\
\vec{B_{3}} & = &
\frac12 \, \vec{a_1}
+ \frac12 \, \vec{a_3}
& = &
\frac12 \, a \, \hat{y}
& (6b) & \mbox{H} \\
\vec{B_{4}} & = &
\frac12 \, \vec{a_1}
+ \frac12 \, \vec{a_2}
& = &
\frac12 \, a \, \hat{z}
& (6b) & \mbox{H} \\
\end{array}
\]
Return to the Simple Cubic and Related Structures Page
Return to the Structure of Crystals Home Page
Return to the Code 6390 Home Page