Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cI16_220_c

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

High–pressure cI16 Li Structure: A_cI16_220_c

Picture of Structure; Click for Big Picture
Prototype : Li
AFLOW prototype label : A_cI16_220_c
Strukturbericht designation : None
Pearson symbol : cI16
Space group number : 220
Space group symbol : $\text{I}\bar{4}\text{3d}$
AFLOW prototype command : aflow --proto=A_cI16_220_c
--params=
$a$,$x_{1}$


Other compounds with this structure

  • Na (under pressure)

  • This is a high-pressure phase of lithium. We use the data from (Hanfland, 2000) at 38.9 GPa. When $x_{1}$ = 0 this becomes a body-centered cubic (A2) system. We have used the fact that all vectors of the form $( \pm a/2 \mathbf{\hat{x}} \pm a/2 \mathbf{\hat{y}} \pm a/2 \mathbf{\hat{z}} )$ are primitive vectors of the body-centered cubic lattice to simplify the positions of some atoms in both lattice and Cartesian coordinates.

Body-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} - \frac12 \, a \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = &2 x_{1} \, \mathbf{a}_{1}+ 2 x_{1} \, \mathbf{a}_{2}+ 2 x_{1} \, \mathbf{a}_{3}& = &x_{1} \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}+ x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{1}+ \left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{3}& = &- x_{1} \, a \, \mathbf{\hat{x}}+ \left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{3} & = &\left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ x_{1} \, a \, \mathbf{\hat{y}}- x_{1} \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{4} & = &\left(\frac12 - 2 x_{1}\right) \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &+ x_{1} \, a \, \mathbf{\hat{x}}- x_{1} \, a \, \mathbf{\hat{y}}\left(\frac12 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{5} & = &\left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + 2 x_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{6} & = &\frac12 \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{3}& = &\left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{7} & = &- 2 x_{1} \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \mathbf{B}_{8} & = &- 2 x_{1} \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\left(\frac14 - x_{1}\right) \, a \, \mathbf{\hat{x}}+ \left(\frac14 + x_{1}\right) \, a \, \mathbf{\hat{y}}+ \left(\frac34 - x_{1}\right) \, a \, \mathbf{\hat{z}}& \left(16c\right) & \text{Li} \\ \end{array} \]

References

  • M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, New high–pressure phases of lithium, Nature 408, 174–178 (2000), doi:10.1038/35041515.

Geometry files


Prototype Generator

aflow --proto=A_cI16_220_c --params=

Species:

Running:

Output: