
AFLOW Prototype: A_oC24_63_3f
Prototype | : | Si24 |
AFLOW prototype label | : | A_oC24_63_3f |
Strukturbericht designation | : | None |
Pearson symbol | : | oC24 |
Space group number | : | 63 |
Space group symbol | : | $Cmcm$ |
AFLOW prototype command | : | aflow --proto=A_oC24_63_3f --params=$a$,$b/a$,$c/a$,$y_{1}$,$z_{1}$,$y_{2}$,$z_{2}$,$y_{3}$,$z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si I} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{1}\right) \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{1}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si I} \\ \mathbf{B}_{3} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{1}\right) \, \mathbf{a}_{3} & = & y_{1}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{1}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si I} \\ \mathbf{B}_{4} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2}-z_{1} \, \mathbf{a}_{3} & = & -y_{1}b \, \mathbf{\hat{y}}-z_{1}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si I} \\ \mathbf{B}_{5} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si II} \\ \mathbf{B}_{6} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si II} \\ \mathbf{B}_{7} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si II} \\ \mathbf{B}_{8} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si II} \\ \mathbf{B}_{9} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si III} \\ \mathbf{B}_{10} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si III} \\ \mathbf{B}_{11} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si III} \\ \mathbf{B}_{12} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Si III} \\ \end{array} \]