AFLOW Prototype: A2B_tI12_140_h_a-001
This structure originally had the label A2B_tI12_140_h_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/PARL
or
https://aflow.org/p/A2B_tI12_140_h_a-001
or
PDF Version
Prototype | Al$_{2}$Cu |
AFLOW prototype label | A2B_tI12_140_h_a-001 |
Strukturbericht designation | $C16$ |
Mineral name | khatyrkite |
ICSD | 198177 |
Pearson symbol | tI12 |
Space group number | 140 |
Space group symbol | $I4/mcm$ |
AFLOW prototype command |
aflow --proto=A2B_tI12_140_h_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$ |
Co$_{2}$B, Cr$_{2}$B, Fe$_{2}$B, Fe$_{2}$Bi, Ge$_{2}$Fe, Hf$_{2}$Al, Hf$_{2}$Ga, Hf$_{2}$Ge, Hf$_{2}$Ni, Hf$_{2}$Si, Hf$_{2}$Th, Hf$_{2}$Zr, In$_{2}$Ag, Mn$_{2}$B, Mo$_{2}$B, Na$_{2}$Au, Ni$_{2}$B, Pb$_{2}$Au, Pb$_{2}$Pd, Pb$_{2}$Rh, Sb$_{2}$Ti, Sb$_{2}$V, Sc$_{2}$Co, Sn$_{2}$Co, Sn$_{2}$Fe, Sn$_{2}$Rh (HT), Ta$_{2}$B, Ta$_{2}$Ni, Ta$_{2}$Si, Ta$_{2}$Zr, Th$_{2}$Ag, Th$_{2}$Al, Th$_{2}$Au, Th$_{2}$Cu, Th$_{2}$Ga, Th$_{2}$Ge, Th$_{2}$Pd, Th$_{2}$Zn, Tl$_{2}$Au, Tl$_{2}$Pd, Tl$_{2}$Pt, W$_{2}$B, Zr$_{2}$Co, Zr$_{2}$Ga, Zr$_{2}$Ni, Zr$_{2}$Rh
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4a) | Cu I |
$\mathbf{B_{3}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8h) | Al I |
$\mathbf{B_{4}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (8h) | Al I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Al I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Al I |