Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tP12_92_b_a-001

This structure originally had the label A2B_tP12_92_b_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/VHRN
or https://aflow.org/p/A2B_tP12_92_b_a-001
or PDF Version

α-Cristobalite (SiO$_{2}$, low, $C30$) Structure: A2B_tP12_92_b_a-001

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Si
AFLOW prototype label A2B_tP12_92_b_a-001
Strukturbericht designation $C30$
Mineral name low (α) cristobalite
ICSD 47221
Pearson symbol tP12
Space group number 92
Space group symbol $P4_12_12$
AFLOW prototype command aflow --proto=A2B_tP12_92_b_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

BeF$_{2}$


  • If the silicon atoms are replaced by aluminium and phosphorous atoms the structure is very similar to the low cristobalite form of AlPO$_{4}$.
  • Paralellurite and $\alpha$-cristobalite ($C30$) have the saem AFLOW prototype label, A2B_tP12_92_b_a. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ (4a) Si I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Si I
$\mathbf{B_{3}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Si I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Si I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{7}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{8}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{9}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{10}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{11}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{12}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O I

References

  • J. J. Pluth, J. V. Smith, and J. J. Faber, Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature, J. Appl. Phys. 57, 1045–1049 (1985), doi:10.1063/1.334545.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=A2B_tP12_92_b_a --params=$a,c/a,x_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: