Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B3C4_oC68_64_2dfg_ad_2d-001

This structure originally had the label A10B3C4_oC68_64_2dfg_ad_2d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/XC67
or https://aflow.org/p/A10B3C4_oC68_64_2dfg_ad_2d-001
or PDF Version

Base-centered Orthorhombic Sr$_{4}$Ru$_{3}$O$_{10}$ Structure: A10B3C4_oC68_64_2dfg_ad_2d-001

Picture of Structure; Click for Big Picture
Prototype O$_{10}$Ru$_{3}$Sr$_{4}$
AFLOW prototype label A10B3C4_oC68_64_2dfg_ad_2d-001
ICSD 96729
Pearson symbol oC68
Space group number 64
Space group symbol $Cmce$
AFLOW prototype command aflow --proto=A10B3C4_oC68_64_2dfg_ad_2d-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$

  • (Crawford, 2002) placed Sr$_{4}$Ru$_{3}$O$_{10}$ in space group $Pbam$ #55, oP68, but found that it was very close to the current structure. Indeed, we derived this structure from the original structure by allowing a small amount of uncertainty in the atomic positions. In both cases the structure consists of triple-layer ruthenate separated by 2.37Å. In the original structure there are two of these layers in the primitive cell which are not equivalent. In the current structure there is only one triple-layer in the primitive base-centered cell, and so the layers in the conventional cell are equivalent.
  • The lattice constants in the CIF for ICSD 96729 do not agree with the lattice constants in (Crawford, 2002), although the atomic positions are the same. We use the published lattice constants.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Ru I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Ru I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}$ (8d) O I
$\mathbf{B_{4}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (8d) O I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}$ (8d) O II
$\mathbf{B_{8}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) O II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (8d) O II
$\mathbf{B_{10}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) O II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}$ (8d) Ru II
$\mathbf{B_{12}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Ru II
$\mathbf{B_{13}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (8d) Ru II
$\mathbf{B_{14}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Ru II
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}$ (8d) Sr I
$\mathbf{B_{16}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Sr I
$\mathbf{B_{17}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (8d) Sr I
$\mathbf{B_{18}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Sr I
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ = $a x_{6} \,\mathbf{\hat{x}}$ (8d) Sr II
$\mathbf{B_{20}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Sr II
$\mathbf{B_{21}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (8d) Sr II
$\mathbf{B_{22}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Sr II
$\mathbf{B_{23}}$ = $- y_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{24}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{25}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{26}}$ = $y_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{27}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{28}}$ = $\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{29}}$ = $- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{30}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{31}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{32}}$ = $\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{33}}$ = $\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16g) O IV
$\mathbf{B_{34}}$ = $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16g) O IV

References

  • M. K. Crawford, R. L. Harlow, W. Marshall, Z. Li, G. Cao, R. L. Lindstrom, Q. Huang, and J. W. Lynn, Structure and magnetism of single crystal Sr$_{4}$Ru$_{3}$O$_{10}$: A ferromagnetic triple-layer ruthenate, Phys. Rev. B 65, 214412 (2002), doi:10.1103/PhysRevB.65.214412.

Prototype Generator

aflow --proto=A10B3C4_oC68_64_2dfg_ad_2d --params=$a,b/a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6},y_{7},z_{7},x_{8},y_{8},z_{8}$

Species:

Running:

Output: