Space Group Notation
This table lists the space group notations used throughout the Encyclopedia. In general, we use the first space group orientation listed in the International Tables. There are two exceptions:
The following notations are used:
A more comprehensive list of all space group orientations can be found at
Number | Orientation | Hermann-Mauguin | Hall | International | Schoenflies |
---|---|---|---|---|---|
1 | P 1 | P 1 | $P1$ | $C_{1}^{1} $ | |
2 | P -1 | -P 1 | $P\overline{1}$ | $C_{i}^{1} $ | |
3 | b | P 1 2 1 | P 2y | $P2$ | $C_{2}^{1} $ |
4 | b | P 1 21 1 | P 2yb | $P2_{1}$ | $C_{2}^{2} $ |
5 | b1 | C 1 2 1 | C 2y | $C2$ | $C_{2}^{3} $ |
6 | b | P 1 m 1 | P -2y | $Pm$ | $C_{s}^{1} $ |
7 | b1 | P 1 c 1 | P -2yc | $Pc$ | $C_{s}^{2} $ |
8 | b1 | C 1 m 1 | C -2y | $Cm$ | $C_{s}^{3} $ |
9 | b1 | C 1 c 1 | C -2yc | $Cc$ | $C_{s}^{4} $ |
10 | b | P 1 2/m 1 | -P 2y | $P2/m$ | $C_{2h}^{1} $ |
11 | b | P 1 21/m 1 | -P 2yb | $P2_{1}/m$ | $C_{2h}^{2} $ |
12 | b1 | C 1 2/m 1 | -C 2y | $C2/m$ | $C_{2h}^{3} $ |
13 | b1 | P 1 2/c 1 | -P 2yc | $P2/c$ | $C_{2h}^{4} $ |
14 | b1 | P 1 21/c 1 | -P 2ybc | $P2_{1}/c$ | $C_{2h}^{5} $ |
15 | b1 | C 1 2/c 1 | -C 2yc | $C2/c$ | $C_{2h}^{6} $ |
16 | P 2 2 2 | P 2 2 | $P222$ | $D_{2}^{1} $ | |
17 | P 2 2 21 | P 2c 2 | $P222_{1}$ | $D_{2}^{2} $ | |
18 | P 21 21 2 | P 2 2ab | $P2_{1}2_{1}2$ | $D_{2}^{3} $ | |
19 | P 21 21 21 | P 2ac 2ab | $P2_{1}2_{1}2_{1}$ | $D_{2}^{4} $ | |
20 | C 2 2 21 | C 2c 2 | $C222_{1}$ | $D_{2}^{5} $ | |
21 | C 2 2 2 | C 2 2 | $C222$ | $D_{2}^{6} $ | |
22 | F 2 2 2 | F 2 2 | $F222$ | $D_{2}^{7} $ | |
23 | I 2 2 2 | I 2 2 | $I222$ | $D_{2}^{8} $ | |
24 | I 21 21 21 | I 2b 2c | $I2_{1}2_{1}2_{1}$ | $D_{2}^{9} $ | |
25 | P m m 2 | P 2 -2 | $Pmm2$ | $C_{2v}^{1} $ | |
26 | P m c 21 | P 2c -2 | $Pmc2_{1}$ | $C_{2v}^{2} $ | |
27 | P c c 2 | P 2 -2c | $Pcc2$ | $C_{2v}^{3} $ | |
28 | P m a 2 | P 2 -2a | $Pma2$ | $C_{2v}^{4} $ | |
29 | P c a 21 | P 2c -2ac | $Pca2_{1}$ | $C_{2v}^{5} $ | |
30 | P n c 2 | P 2 -2bc | $Pnc2$ | $C_{2v}^{6} $ | |
31 | P m n 21 | P 2ac -2 | $Pmn2_{1}$ | $C_{2v}^{7} $ | |
32 | P b a 2 | P 2 -2ab | $Pba2$ | $C_{2v}^{8} $ | |
33 | P n a 21 | P 2c -2n | $Pna2_{1}$ | $C_{2v}^{9} $ | |
34 | P n n 2 | P 2 -2n | $Pnn2$ | $C_{2v}^{10} $ | |
35 | C m m 2 | C 2 -2 | $Cmm2$ | $C_{2v}^{11} $ | |
36 | C m c 21 | C 2c -2 | $Cmc2_{1}$ | $C_{2v}^{12} $ | |
37 | C c c 2 | C 2 -2c | $Ccc2$ | $C_{2v}^{13} $ | |
38 | A m m 2 | A 2 -2 | $Amm2$ | $C_{2v}^{14} $ | |
39 | A e m 2 | A 2 -2c | $Aem2$ | $C_{2v}^{15} $ | |
40 | A m a 2 | A 2 -2a | $Ama2$ | $C_{2v}^{16} $ | |
41 | A e a 2 | A 2 -2ac | $Aea2$ | $C_{2v}^{17} $ | |
42 | F m m 2 | F 2 -2 | $Fmm2$ | $C_{2v}^{18} $ | |
43 | F d d 2 | F 2 -2d | $Fdd2$ | $C_{2v}^{19} $ | |
44 | I m m 2 | I 2 -2 | $Imm2$ | $C_{2v}^{20} $ | |
45 | I b a 2 | I 2 -2c | $Iba2$ | $C_{2v}^{21} $ | |
46 | I m a 2 | I 2 -2a | $Ima2$ | $C_{2v}^{22} $ | |
47 | P 2/m 2/m 2/m | -P 2 2 | $Pmmm$ | $D_{2h}^{1} $ | |
48 | 2 | P 2/n 2/n 2/n:2 | -P 2ab 2bc | $Pnnn$ | $D_{2h}^{2} $ |
49 | P 2/c 2/c 2/m | -P 2 2c | $Pccm$ | $D_{2h}^{3} $ | |
50 | 2 | P 2/b 2/a 2/n:2 | -P 2ab 2b | $Pban$ | $D_{2h}^{4} $ |
51 | P 21/m 2/m 2/a | -P 2a 2a | $Pmma$ | $D_{2h}^{5} $ | |
52 | P 2/n 21/n 2/a | -P 2a 2bc | $Pnna$ | $D_{2h}^{6i} $ | |
53 | P 2/m 2/n 21/a | -P 2ac 2 | $Pmna$ | $D_{2h}^{7} $ | |
54 | P 21/c 2/c 2/a | -P 2a 2ac | $Pcca$ | $D_{2h}^{8} $ | |
55 | P 21/b 21/a 2/m | -P 2 2ab | $Pbam$ | $D_{2h}^{9} $ | |
56 | P 21/c 21/c 2/n | -P 2ab 2ac | $Pccn$ | $D_{2h}^{10} $ | |
57 | P 2/b 21/c 21/m | -P 2c 2b | $Pbcm$ | $D_{2h}^{11} $ | |
58 | P 21/n 21/n 2/m | -P 2 2n | $Pnnm$ | $D_{2h}^{12} $ | |
59 | 2 | P 21/m 21/m 2/n:2 | -P 2ab 2a | $Pmmn$ | $D_{2h}^{13} $ |
60 | P 21/b 2/c 21/n | -P 2n 2ab | $Pbcn$ | $D_{2h}^{14} $ | |
61 | P 21/b 21/c 21/a | -P 2ac 2ab | $Pbca$ | $D_{2h}^{15} $ | |
62 | P 21/n 21/m 21/a | -P 2ac 2n | $Pnma$ | $D_{2h}^{16} $ | |
63 | C 2/m 2/c 21/m | -C 2c 2 | $Cmcm$ | $D_{2h}^{17} $ | |
64 | C 2/m 2/c 21/a | -C 2bc 2 | $Cmce$ | $D_{2h}^{18} $ | |
65 | C 2/m 2/m 2/m | -C 2 2 | $Cmmm$ | $D_{2h}^{19} $ | |
66 | C 2/c 2/c 2/m | -C 2 2c | $Cccm$ | $D_{2h}^{20} $ | |
67 | C 2/m 2/m 2/a | -C 2b 2 | $Cmme$ | $D_{2h}^{21} $ | |
68 | 2 | C 2/c 2/c 2/a:2 | -C 2b 2bc | $Ccca$ | $D_{2h}^{22} $ |
69 | F 2/m 2/m 2/m | -F 2 2 | $Fmmm$ | $D_{2h}^{23} $ | |
70 | 2 | F 2/d 2/d 2/d:2 | -F 2uv 2vw | $Fddd$ | $D_{2h}^{24} $ |
71 | I 2/m 2/m 2/m | -I 2 2 | $Immm$ | $D_{2h}^{25} $ | |
72 | I 2/b 2/a 2/m | -I 2 2c | $Ibam$ | $D_{2h}^{26} $ | |
73 | I 2/b 2/c 2/a | -I 2b 2c | $Ibca$ | $D_{2h}^{27} $ | |
74 | I 2/m 2/m 2/a | -I 2b 2 | $Imma$ | $D_{2h}^{28} $ | |
75 | P 4 | P 4 | $P4$ | $C_{4}^{1} $ | |
76 | P 41 | P 4w | $P4_{1}$ | $C_{4}^{2} $ | |
77 | P 42 | P 4c | $P4_{2}$ | $C_{4}^{3} $ | |
78 | P 43 | P 4cw | $P4_{3}$ | $C_{4}^{4} $ | |
79 | I 4 | I 4 | $I4$ | $C_{4}^{5} $ | |
80 | I 41 | I 4bw | $I4_{1}$ | $C_{4}^{6} $ | |
81 | P -4 | P -4 | $P\overline{4}$ | $S_{4}^{1} $ | |
82 | I -4 | I -4 | $I\overline{4}$ | $S_{4}^{2} $ | |
83 | P 4/m | -P 4 | $P4/m$ | $C_{4h}^{1} $ | |
84 | P 42/m | -P 4c | $P4_{2}/m$ | $C_{4h}^{2} $ | |
85 | 2 | P 4/n:2 | -P 4a | $P4/n$ | $C_{4h}^{3} $ |
86 | 2 | P 42/n:2 | -P 4bc | $P4_{2}/n$ | $C_{4h}^{4} $ |
87 | I 4/m | -I 4 | $I4/m$ | $C_{4h}^{5} $ | |
88 | 2 | I 41/a:2 | -I 4ad | $I4_{1}/a$ | $C_{4h}^{6} $ |
89 | P 4 2 2 | P 4 2 | $P422$ | $D_{4}^{1} $ | |
90 | P 4 21 2 | P 4ab 2ab | $P42_{1}2$ | $D_{4}^{2} $ | |
91 | P 41 2 2 | P 4w 2c | $P4_{1}22$ | $D_{4}^{3} $ | |
92 | P 41 21 2 | P 4abw 2nw | $P4_{1}2_{1}2$ | $D_{4}^{4} $ | |
93 | P 42 2 2 | P 4c 2 | $P4_{2}22$ | $D_{4}^{5} $ | |
94 | P 42 21 2 | P 4n 2n | $P4_{2}2_{1}2$ | $D_{4}^{6} $ | |
95 | P 43 2 2 | P 4cw 2c | $P4_{3}22$ | $D_{4}^{7} $ | |
96 | P 43 21 2 | P 4nw 2abw | $P4_{3}2_{1}2$ | $D_{4}^{8} $ | |
97 | I 4 2 2 | I 4 2 | $I422$ | $D_{4}^{9} $ | |
98 | I 41 2 2 | I 4bw 2bw | $I4_{1}22$ | $D_{4}^{10} $ | |
99 | P 4 m m | P 4 -2 | $P4mm$ | $C_{4v}^{1} $ | |
100 | P 4 b m | P 4 -2ab | $P4bm$ | $C_{4v}^{2} $ | |
101 | P 42 c m | P 4c -2c | $P4_{2}cm$ | $C_{4v}^{3} $ | |
102 | P 42 n m | P 4n -2n | $P4_{2}nm$ | $C_{4v}^{4} $ | |
103 | P 4 c c | P 4 -2c | $P4cc$ | $C_{4v}^{5} $ | |
104 | P 4 n c | P 4 -2n | $P4nc$ | $C_{4v}^{6} $ | |
105 | P 42 m c | P 4c -2 | $P4_{2}mc$ | $C_{4v}^{7} $ | |
106 | P 42 b c | P 4c -2ab | $P_{2}bc$ | $C_{4v}^{8} $ | |
107 | I 4 m m | I 4 -2 | $I4mm$ | $C_{4v}^{9} $ | |
108 | I 4 c m | I 4 -2c | $I4cm$ | $C_{4v}^{10} $ | |
109 | I 41 m d | I 4bw -2 | $I4_{1}md$ | $C_{4v}^{11} $ | |
110 | I 41 c d | I 4bw -2c | $I4_{1}cd$ | $C_{4v}^{12} $ | |
111 | P -4 2 m | P -4 2 | $P\overline{4}2m$ | $D_{2d}^{1} $ | |
112 | P -4 2 c | P -4 2c | $P\overline{4}2c$ | $D_{2d}^{2} $ | |
113 | P -4 21 m | P -4 2ab | $P\overline{4}2_{1}m$ | $D_{2d}^{3} $ | |
114 | P -4 21 c | P -4 2n | $P\overline{4}2_{1}c$ | $D_{2d}^{4} $ | |
115 | P -4 m 2 | P -4 -2 | $P\overline{4}m2$ | $D_{2d}^{5} $ | |
116 | P -4 c 2 | P -4 -2c | $P\overline{4}c2$ | $D_{2d}^{6} $ | |
117 | P -4 b 2 | P -4 -2ab | $P\overline{4}b2$ | $D_{2d}^{7} $ | |
118 | P -4 n 2 | P -4 -2n | $P\overline{4}n2$ | $D_{2d}^{8} $ | |
119 | I -4 m 2 | I -4 -2 | $I\overline{4}m2$ | $D_{2d}^{9} $ | |
120 | I -4 c 2 | I -4 -2c | $I\overline{4}c2$ | $D_{2d}^{10} $ | |
121 | I -4 2 m | I -4 2 | $I\overline{4}2m$ | $D_{2d}^{11} $ | |
122 | I -4 2 d | I -4 2bw | $I\overline{4}2d$ | $D_{2d}^{12} $ | |
123 | P 4/m 2/m 2/m | -P 4 2 | $P4/mmm$ | $D_{4h}^{1} $ | |
124 | P 4/m 2/c 2/c | -P 4 2c | $P4/mcc$ | $D_{4h}^{2} $ | |
125 | 2 | P 4/n 2/b 2/m:2 | -P 4a 2b | $P4/nbm$ | $D_{4h}^{3} $ |
126 | 2 | P 4/n 2/n 2/c:2 | -P 4a 2bc | $P4/nnc$ | $D_{4h}^{4} $ |
127 | P 4/m 21/b 2/m | -P 4 2ab | $P4/mbm$ | $D_{4h}^{5} $ | |
128 | P 4/m 21/n 2/c | -P 4 2n | $P4/mnc$ | $D_{4h}^{6} $ | |
129 | 2 | P 4/n 21/m 2/m:2 | -P 4a 2a | $P4/nmm$ | $D_{4h}^{7} $ |
130 | 2 | P 4/n 21/c 2/c:2 | -P 4a 2ac | $P4/ncc$ | $D_{4h}^{8} $ |
131 | P 42/m 2/m 2/c | -P 4c 2 | $P4_{2}/mmc$ | $D_{4h}^{9} $ | |
132 | P 42/m 2/c 2/m | -P 4c 2c | $P4_{2}/mcm$ | $D_{4h}^{10} $ | |
133 | 2 | P 42/n 2/b 2/c:2 | -P 4ac 2b | $P4_{2}/nbc$ | $D_{4h}^{11} $ |
134 | 2 | P 42/n 2/n 2/m:2 | -P 4ac 2bc | $P4_{2}/nnm$ | $D_{4h}^{12} $ |
135 | P 42/m 21/b 2/c | -P 4c 2ab | $P4_{2}/mbc$ | $D_{4h}^{13} $ | |
136 | P 42/m 21/n 2/m | -P 4n 2n | $P4_{2}/mnm$ | $D_{4h}^{14} $ | |
137 | 2 | P 42/n 21/m 2/c:2 | -P 4ac 2a | $P4_{2}/nmc$ | $D_{4h}^{15} $ |
138 | 2 | P 42/n 21/c 2/m:2 | -P 4ac 2ac | $P4_{2}/ncm$ | $D_{4h}^{16} $ |
139 | I 4/m 2/m 2/m | -I 4 2 | $I4/mmm$ | $D_{4h}^{17} $ | |
140 | I 4/m 2/c 2/m | -I 4 2c | $I4/mcm$ | $D_{4h}^{18} $ | |
141 | 2 | I 41/a 2/m 2/d:2 | -I 4bd 2 | $I4_{1}/amd$ | $D_{4h}^{19} $ |
142 | 2 | I 41/a 2/c 2/d:2 | -I 4bd 2c | $I4_{1}/acd$ | $D_{4h}^{20} $ |
143 | P 3 | P 3 | $P3$ | $C_{3}^{1} $ | |
144 | P 31 | P 31 | $P3_{1}$ | $C_{3}^{2} $ | |
145 | P 32 | P 32 | $P3_{2}$ | $C_{3}^{3} $ | |
146 | H | R 3:H | R 3 | $R3$ | $C_{3}^{4} $ |
147 | P -3 | -P 3 | $P\overline{3}$ | $C_{3i}^{1} $ | |
148 | H | R -3:H | -R 3 | $R\overline{3}$ | $C_{3i}^{2} $ |
149 | P 3 1 2 | P 3 2 | $P312$ | $D_{3}^{1} $ | |
150 | P 3 2 1 | P 3 2'' | $P321$ | $D_{3}^{2} $ | |
151 | P 31 1 2 | P 31 2c (0 0 1) | $P3_{1}12$ | $D_{3}^{3} $ | |
152 | P 31 2 1 | P 31 2'' | $P3_{1}21$ | $D_{3}^{4} $ | |
153 | P 32 1 2 | P 32 2c (0 0 -1) | $P3_{2}12$ | $D_{3}^{5} $ | |
154 | P 32 2 1 | P 32 2'' | $P3_{2}21$ | $D_{3}^{6} $ | |
155 | H | R 32:H | R 3 2'' | $R32$ | $D_{3}^{7} $ |
156 | P 3 m 1 | P 3 -2'' | $P3m1$ | $C_{3v}^{1} $ | |
157 | P 3 1 m | P 3 -2 | $P31m$ | $C_{3v}^{2} $ | |
158 | P 3 c 1 | P 3 -2''c | $P3c1$ | $C_{3v}^{3} $ | |
159 | P 3 1 c | P 3 -2c | $P31c$ | $C_{3v}^{4} $ | |
160 | H | R 3 m:H | R 3 -2'' | $R3m$ | $C_{3v}^{5} $ |
161 | H | R 3 c:H | R 3 -2''c | $R3c$ | $C_{3v}^{6} $ |
162 | P -3 1 2/m | -P 3 2 | $P\overline{3}1m$ | $D_{3d}^{1} $ | |
163 | P -3 1 2/c | -P 3 2c | $P\overline{3}1c$ | $D_{3d}^{2} $ | |
164 | P -3 2/m 1 | -P 3 2'' | $P\overline{3}m1$ | $D_{3d}^{3} $ | |
165 | P -3 2/c 1 | -P 3 2''c | $P\overline{3}c1$ | $D_{3d}^{4} $ | |
166 | H | R -3 2/m:H | -R 3 2'' | $R\overline{3}m$ | $D_{3d}^{5} $ |
167 | H | R -3 2/c:H | -R 3 2''c | $R\overline{3}c$ | $D_{3d}^{6} $ |
168 | P 6 | P 6 | $P6$ | $C_{6}^{1} $ | |
169 | P 61 | P 61 | $P6_{1}$ | $C_{6}^{2} $ | |
170 | P 65 | P 65 | $P6_{5}$ | $C_{6}^{3} $ | |
171 | P 62 | P 62 | $P6_{2}$ | $C_{6}^{4} $ | |
172 | P 64 | P 64 | $P6_{4}$ | $C_{6}^{5} $ | |
173 | P 63 | P 6c | $P6_{3}$ | $C_{6}^{6} $ | |
174 | P -6 | P -6 | $P\overline{6}$ | $C_{3h}^{1} $ | |
175 | P 6/m | -P 6 | $P6/m$ | $C_{6h}^{1} $ | |
176 | P 63/m | -P 6c | $P6_{3}/m$ | $C_{6h}^{2} $ | |
177 | P 6 2 2 | P 6 2 | $P622$ | $D_{6}^{1} $ | |
178 | P 61 2 2 | P 61 2 (0 0 -1) | $P6_{1}22$ | $D_{6}^{2} $ | |
179 | P 65 2 2 | P 65 2 (0 0 1) | $P6_{5}22$ | $D_{6}^{3} $ | |
180 | P 62 2 2 | P 62 2c (0 0 1) | $P6_{2}22$ | $D_{6}^{4} $ | |
181 | P 64 2 2 | P 64 2c (0 0 -1) | $P6_{4}22$ | $D_{6}^{5} $ | |
182 | P 63 2 2 | P 6c 2c | $P6_{3}22$ | $D_{6}^{6} $ | |
183 | P 6 m m | P 6 -2 | $P6mm$ | $C_{6v}^{1} $ | |
184 | P 6 c c | P 6 -2c | $P6cc$ | $C_{6v}^{2} $ | |
185 | P 63 c m | P 6c -2 | $P6_{3}cm$ | $C_{6v}^{3} $ | |
186 | P 63 m c | P 6c -2c | $P6_{3}mc$ | $C_{6v}^{4} $ | |
187 | P -6 m 2 | P -6 2 | $P\overline{6}m2$ | $D_{3h}^{1} $ | |
188 | P -6 c 2 | P -6c 2 | $P\overline{6}c2$ | $D_{3h}^{2} $ | |
189 | P -6 2 m | P -6 -2 | $P\overline{6}2m$ | $D_{3h}^{3} $ | |
190 | P -6 2 c | P -6c -2c | $P\overline{6}2c$ | $D_{3h}^{4} $ | |
191 | P 6/m 2/m 2/m | -P 6 2 | $P6/mmm$ | $D_{6h}^{1} $ | |
192 | P 6/m 2/c 2/c | -P 6 2c | $P6/mcc$ | $D_{6h}^{2} $ | |
193 | P 63/m 2/c 2/m | -P 6c 2 | $P6_{3}/mcm$ | $D_{6h}^{3} $ | |
194 | P 63/m 2/m 2/c | -P 6c 2c | $P6_{3}/mmc$ | $D_{6h}^{4} $ | |
195 | P 2 3 | P 2 2 3 | $P23$ | $T_{}^{1} $ | |
196 | F 2 3 | F 2 2 3 | $F23$ | $T_{}^{2} $ | |
197 | I 2 3 | I 2 2 3 | $I23$ | $T_{}^{3} $ | |
198 | P 21 3 | P 2ac 2ab 3 | $P2_{1}3$ | $T_{}^{4} $ | |
199 | I 21 3 | I 2b 2c 3 | $I2_{1}3$ | $T_{}^{5} $ | |
200 | P 2/m -3 | -P 2 2 3 | $Pm\overline{3}$ | $T_{h}^{1} $ | |
201 | 2 | P 2/n -3:2 | -P 2ab 2bc 3 | $Pn\overline{3}$ | $T_{h}^{2} $ |
202 | F 2/m -3 | -F 2 2 3 | $Fm\overline{3}$ | $T_{h}^{3} $ | |
203 | 2 | F 2/d -3:2 | -F 2uv 2vw 3 | $Fd\overline{3}$ | $T_{h}^{4} $ |
204 | I 2/m -3 | -I 2 2 3 | $Im\overline{3}$ | $T_{h}^{5} $ | |
205 | P 21/a -3 | -P 2ac 2ab 3 | $Pa\overline{3}$ | $T_{h}^{6} $ | |
206 | I 21/a -3 | -I 2b 2c 3 | $Ia\overline{3}$ | $T_{h}^{7} $ | |
207 | P 4 3 2 | P 4 2 3 | $P432$ | $O^{1} $ | |
208 | P 42 3 2 | P 4n 2 3 | $P4_{2}32$ | $O^{2} $ | |
209 | F 4 3 2 | F 4 2 3 | $F432$ | $O^{3} $ | |
210 | F 41 3 2 | F 4d 2 3 | $F4_{1}32$ | $O^{4} $ | |
211 | I 4 3 2 | I 4 2 3 | $I432$ | $O^{5} $ | |
212 | P 43 3 2 | P 4acd 2ab 3 | $P4_{3}32$ | $O^{6} $ | |
213 | P 41 3 2 | P 4bd 2ab 3 | $P4_{1}32$ | $O^{7} $ | |
214 | I 41 3 2 | I 4bd 2c 3 | $I4_{1}32$ | $O^{8} $ | |
215 | P -4 3 m | P -4 2 3 | $P\overline{4}3m$ | $T_{d}^{1} $ | |
216 | F -4 3 m | F -4 2 3 | $F\overline{4}3m$ | $T_{d}^{2} $ | |
217 | I -4 3 m | I -4 2 3 | $I\overline{4}3m$ | $T_{d}^{3} $ | |
218 | P -4 3 n | P -4n 2 3 | $P\overline{4}3n$ | $T_{d}^{4} $ | |
219 | F -4 3 c | F -4c 2 3 | $F\overline{4}3c$ | $T_{d}^{5} $ | |
220 | I -4 3 d | I -4bd 2c 3 | $I\overline{4}3d$ | $T_{d}^{6} $ | |
221 | P 4/m -3 2/m | -P 4 2 3 | $Pm\overline{3}m$ | $O_{h}^{1} $ | |
222 | 2 | P 4/n -3 2/n:2 | -P 4a 2bc 3 | $Pn\overline{3}n$ | $O_{h}^{2} $ |
223 | P 42/m -3 2/n | -P 4n 2 3 | $Pm\overline{3}n$ | $O_{h}^{3} $ | |
224 | 2 | P 42/n -3 2/m:2 | -P 4bc 2bc 3 | $Pn\overline{3}m$ | $O_{h}^{4} $ |
225 | F 4/m -3 2/m | -F 4 2 3 | $Fm\overline{3}m$ | $O_{h}^{5} $ | |
226 | F 4/m -3 2/c | -F 4c 2 3 | $Fm\overline{3}c$ | $O_{h}^{6} $ | |
227 | 2 | F 41/d -3 2/m:2 | -F 4vw 2vw 3 | $Fd\overline{3}m$ | $O_{h}^{7} $ |
228 | 2 | F 41/d -3 2/c:2 | -F 4cvw 2vw 3 | $Fd\overline{3}c$ | $O_{h}^{8} $ |
229 | I 4/m -3 2/m | -I 4 2 3 | $Im\overline{3}m$ | $O_{h}^{9} $ | |
230 | I 41/a -3 2/d | -I 4bd 2c 3 | $Ia\overline{3}d$ | $O_{h}^{10}$ |