Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B3C4_oP68_55_2e2fgh2i_adef_2e2f-001

This structure originally had the label A10B3C4_oP68_55_2e2fgh2i_adef_2e2f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/PEKW
or https://aflow.org/p/A10B3C4_oP68_55_2e2fgh2i_adef_2e2f-001
or PDF Version

Orthorhombic Sr$_{4}$Ru$_{3}$O$_{10}$ Structure: A10B3C4_oP68_55_2e2fgh2i_adef_2e2f-001

Picture of Structure; Click for Big Picture
Prototype O$_{10}$Ru$_{3}$Sr$_{4}$
AFLOW prototype label A10B3C4_oP68_55_2e2fgh2i_adef_2e2f-001
ICSD 96729
Pearson symbol oP68
Space group number 55
Space group symbol $Pbam$
AFLOW prototype command aflow --proto=A10B3C4_oP68_55_2e2fgh2i_adef_2e2f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}$

  • This structure consists of triple-layer ruthenate structures separated by 2.37Å from each other. In the $Pbam$ #55 space group shown here there are two inequivalent stacks in the orthorhombic cell.
  • This cell is very problematic. (Crawford, 2002) note that the x-ray scattering intensities are pseudo body-centered, but found that refining this structure in a body-centered cell with space group $Bbcm$ ($Cmca$ #64 in our standard orientation) led to non-positive definite thermal parameters. In that case there is only one triple-layer stack in the primitive cell, and the two stacks in the conventional orthorhombic cell are equivalent.
  • If we use AFLOW with its default tolerance the structure also resolves into the smaller unit cell. The current cell can be recovered by using a smaller tolerance:
  • aflow --proto=A10B3C4_oC68_64_2dfg_ad_2d:O:Ru:Sr --params=a,b/a,c/a,x$_{2}$,z$_{3}$,z$_{4}$,z$_{5}$,z$_{6}$,z$_{7}$,z$_{8}$,z$_{9}$,z$_{10}$,z$_{11}$,z$_{12}$,x$_{13}$,y$_{13}$,x$_{14}$,y$_{14}$,x$_{15}$,y$_{15}$,z$_{15}$,x$_{16}$,y$_{16}$,z$_{16}$ --tolerance=0.001 .
  • Note that the lattice constants in the CIF for ICSD 96729 do not agree with the lattice constants in (Crawford, 2002), although the atomic positions are the same.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ru I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2a) Ru I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ru II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Ru II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{9}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{11}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{13}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) Ru III
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (4e) Ru III
$\mathbf{B_{15}}$ = $- z_{5} \, \mathbf{a}_{3}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) Ru III
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4e) Ru III
$\mathbf{B_{17}}$ = $z_{6} \, \mathbf{a}_{3}$ = $c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{19}}$ = $- z_{6} \, \mathbf{a}_{3}$ = $- c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{21}}$ = $z_{7} \, \mathbf{a}_{3}$ = $c z_{7} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{23}}$ = $- z_{7} \, \mathbf{a}_{3}$ = $- c z_{7} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{24}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4f) O III
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (4f) O III
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4f) O III
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (4f) O III
$\mathbf{B_{29}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4f) O IV
$\mathbf{B_{30}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (4f) O IV
$\mathbf{B_{31}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4f) O IV
$\mathbf{B_{32}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4f) O IV
$\mathbf{B_{33}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4f) Ru IV
$\mathbf{B_{34}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (4f) Ru IV
$\mathbf{B_{35}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4f) Ru IV
$\mathbf{B_{36}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4f) Ru IV
$\mathbf{B_{37}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4f) Sr III
$\mathbf{B_{38}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (4f) Sr III
$\mathbf{B_{39}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4f) Sr III
$\mathbf{B_{40}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4f) Sr III
$\mathbf{B_{41}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4f) Sr IV
$\mathbf{B_{42}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{12} \,\mathbf{\hat{z}}$ (4f) Sr IV
$\mathbf{B_{43}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (4f) Sr IV
$\mathbf{B_{44}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (4f) Sr IV
$\mathbf{B_{45}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}$ = $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}$ (4g) O V
$\mathbf{B_{46}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}$ = $- a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}$ (4g) O V
$\mathbf{B_{47}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) O V
$\mathbf{B_{48}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) O V
$\mathbf{B_{49}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O VI
$\mathbf{B_{50}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O VI
$\mathbf{B_{51}}$ = $- \left(x_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O VI
$\mathbf{B_{52}}$ = $\left(x_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O VI
$\mathbf{B_{53}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{54}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{55}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{56}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{57}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{58}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{59}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{60}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{61}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{62}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{63}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{64}}$ = $\left(x_{16} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a \left(x_{16} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{65}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{66}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{67}}$ = $\left(x_{16} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a \left(x_{16} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII
$\mathbf{B_{68}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8i) O VIII

References

  • M. K. Crawford, R. L. Harlow, W. Marshall, Z. Li, G. Cao, R. L. Lindstrom, Q. Huang, and J. W. Lynn, Structure and magnetism of single crystal Sr$_{4}$Ru$_{3}$O$_{10}$: A ferromagnetic triple-layer ruthenate, Phys. Rev. B 65, 214412 (2002), doi:10.1103/PhysRevB.65.214412.

Prototype Generator

aflow --proto=A10B3C4_oP68_55_2e2fgh2i_adef_2e2f --params=$a,b/a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11},z_{12},x_{13},y_{13},x_{14},y_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16}$

Species:

Running:

Output: