AFLOW Prototype: A10B3_oF52_42_2abce_ab-001
This structure originally had the label A10B3_oF52_42_2abce_ab. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/TH7F
or
https://aflow.org/p/A10B3_oF52_42_2abce_ab-001
or
PDF Version
Prototype | O$_{10}$W$_{3}$ |
AFLOW prototype label | A10B3_oF52_42_2abce_ab-001 |
ICSD | 15514 |
Pearson symbol | oF52 |
Space group number | 42 |
Space group symbol | $Fmm2$ |
AFLOW prototype command |
aflow --proto=A10B3_oF52_42_2abce_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (4a) | O I |
$\mathbf{B_{2}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4a) | O II |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4a) | W I |
$\mathbf{B_{4}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8b) | O III |
$\mathbf{B_{5}}$ | = | $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8b) | O III |
$\mathbf{B_{6}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8b) | W II |
$\mathbf{B_{7}}$ | = | $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8b) | W II |
$\mathbf{B_{8}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | O IV |
$\mathbf{B_{9}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | O IV |
$\mathbf{B_{10}}$ | = | $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16e) | O V |
$\mathbf{B_{11}}$ | = | $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16e) | O V |
$\mathbf{B_{12}}$ | = | $- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16e) | O V |
$\mathbf{B_{13}}$ | = | $\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16e) | O V |