Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B3_oF52_42_2abce_ab-001

This structure originally had the label A10B3_oF52_42_2abce_ab. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/TH7F
or https://aflow.org/p/A10B3_oF52_42_2abce_ab-001
or PDF Version

W$_{3}$O$_{10}$ (WO$_{3} \cdot \frac13$H$_{2}$O) Structure: A10B3_oF52_42_2abce_ab-001

Picture of Structure; Click for Big Picture
Prototype O$_{10}$W$_{3}$
AFLOW prototype label A10B3_oF52_42_2abce_ab-001
ICSD 15514
Pearson symbol oF52
Space group number 42
Space group symbol $Fmm2$
AFLOW prototype command aflow --proto=A10B3_oF52_42_2abce_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

  • The designation of this structure is somewhat confusing. (Gerand, 1981) call this structure WO$_{3}$·$\frac13$H$_{2}$O, more properly written as W$_{3}$O$_{9}$·H$_{2}$O, but they do not give the positions of the hydrogen atoms, which are presumably associated with the O-V [O(2) in (Gerand, 1981)] atoms. Without further guidance we have left the hydrogens out of this study.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) O I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4a) O II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4a) W I
$\mathbf{B_{4}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8b) O III
$\mathbf{B_{5}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O III
$\mathbf{B_{6}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8b) W II
$\mathbf{B_{7}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) W II
$\mathbf{B_{8}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{9}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{10}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) O V
$\mathbf{B_{11}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) O V
$\mathbf{B_{12}}$ = $- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) O V
$\mathbf{B_{13}}$ = $\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) O V

References

  • B. Gerand, G. Nowogrocki, and M. Figlarz, A new tungsten trioxide hydrate, WO$_{3} \cdot \frac13$H$_{2}$O: Preparation, characterization, and crystallographic study, J. Solid State Chem. 38, 312–320 (1981), doi:10.1016/0022-4596(81)90062-1.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A10B3_oF52_42_2abce_ab --params=$a,b/a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: