AFLOW Prototype: A10B7_oC68_64_f2g_adef-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/7BKZ
or
https://aflow.org/p/A10B7_oC68_64_f2g_adef-001
or
PDF Version
Prototype | Ni$_{10}$Zr$_{7}$ |
AFLOW prototype label | A10B7_oC68_64_f2g_adef-001 |
ICSD | 240191 |
Pearson symbol | oC68 |
Space group number | 64 |
Space group symbol | $Cmce$ |
AFLOW prototype command |
aflow --proto=A10B7_oC68_64_f2g_adef-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$ |
Hf$_{7}$Ni$_{10}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Zr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4a) | Zr I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (8d) | Zr II |
$\mathbf{B_{4}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8d) | Zr II |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (8d) | Zr II |
$\mathbf{B_{6}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8d) | Zr II |
$\mathbf{B_{7}}$ | = | $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | Zr III |
$\mathbf{B_{8}}$ | = | $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8e) | Zr III |
$\mathbf{B_{9}}$ | = | $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8e) | Zr III |
$\mathbf{B_{10}}$ | = | $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | Zr III |
$\mathbf{B_{11}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8f) | Ni I |
$\mathbf{B_{12}}$ | = | $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Ni I |
$\mathbf{B_{13}}$ | = | $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Ni I |
$\mathbf{B_{14}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8f) | Ni I |
$\mathbf{B_{15}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8f) | Zr IV |
$\mathbf{B_{16}}$ | = | $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Zr IV |
$\mathbf{B_{17}}$ | = | $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Zr IV |
$\mathbf{B_{18}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8f) | Zr IV |
$\mathbf{B_{19}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{20}}$ | = | $\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{21}}$ | = | $- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{22}}$ | = | $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{23}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{24}}$ | = | $\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{25}}$ | = | $\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{26}}$ | = | $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16g) | Ni II |
$\mathbf{B_{27}}$ | = | $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{28}}$ | = | $\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{29}}$ | = | $- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{30}}$ | = | $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{31}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{32}}$ | = | $\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{33}}$ | = | $\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16g) | Ni III |
$\mathbf{B_{34}}$ | = | $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16g) | Ni III |