Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B29_mC82_12_6i_a14i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/BPW1
or https://aflow.org/p/A12B29_mC82_12_6i_a14i-001
or PDF Version

Monoclinic Nb$_{12}$O$_{29}$ Structure: A12B29_mC82_12_6i_a14i-001

Picture of Structure; Click for Big Picture
Prototype Nb$_{12}$O$_{29}$
AFLOW prototype label A12B29_mC82_12_6i_a14i-001
ICSD 24111
Pearson symbol mC82
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=A12B29_mC82_12_6i_a14i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak z_{21}$

Other compounds with this structure

Ti$_{2}$Nb$_{10}$O$_{29}$


  • Nb$_{12}$O$_{29}$ is known to exist in a least two phases (Norin, 1963; Norin, 1966):
  • (Wadsley, 1961) earlier found that both known phases of Ti$_{2}$Nb$_{12}$O$_{29}$ are isostructural with the corresponding Nb$_{12}$O$_{29}$ phase, but as the titanium and niobium atoms are alloyed on the same site we use the binary Nb$_{12}$O$_{29}$ as the prototype.
  • (Norin, 1966) gives the structure of orthorhombic Nb$_{12}$O$_{29}$ in the $A2/a$ setting of space group #15, with the origin at -1 on the $a$-glide plane. We when we checked this with FINDSYM we found that the structure could be placed in space group $C2/m$ #12 with a unit cell half that found by (Norin, 1966), and close to the dimensions of the cell found in (Wadsley, 1961) and (Norin, 1963).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) O I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb IV
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb V
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb V
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb VI
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Nb VI
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O II
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O II
$\mathbf{B_{16}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O III
$\mathbf{B_{17}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O III
$\mathbf{B_{18}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{19}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O IV
$\mathbf{B_{20}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{21}}$ = $- x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O V
$\mathbf{B_{22}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{23}}$ = $- x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VI
$\mathbf{B_{24}}$ = $x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{25}}$ = $- x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VII
$\mathbf{B_{26}}$ = $x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VIII
$\mathbf{B_{27}}$ = $- x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O VIII
$\mathbf{B_{28}}$ = $x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O IX
$\mathbf{B_{29}}$ = $- x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O IX
$\mathbf{B_{30}}$ = $x_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O X
$\mathbf{B_{31}}$ = $- x_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O X
$\mathbf{B_{32}}$ = $x_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XI
$\mathbf{B_{33}}$ = $- x_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XI
$\mathbf{B_{34}}$ = $x_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XII
$\mathbf{B_{35}}$ = $- x_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XII
$\mathbf{B_{36}}$ = $x_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XIII
$\mathbf{B_{37}}$ = $- x_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XIII
$\mathbf{B_{38}}$ = $x_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XIV
$\mathbf{B_{39}}$ = $- x_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XIV
$\mathbf{B_{40}}$ = $x_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XV
$\mathbf{B_{41}}$ = $- x_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O XV

References


Prototype Generator

aflow --proto=A12B29_mC82_12_6i_a14i --params=$a,b/a,c/a,\beta,x_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15},x_{16},z_{16},x_{17},z_{17},x_{18},z_{18},x_{19},z_{19},x_{20},z_{20},x_{21},z_{21}$

Species:

Running:

Output: