Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B29_oC164_63_6f_3c13f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/V0KX
or https://aflow.org/p/A12B29_oC164_63_6f_3c13f-001
or PDF Version

Orthorhombic Nb$_{12}$O$_{29}$ Structure: A12B29_oC164_63_6f_3c13f-001

Picture of Structure; Click for Big Picture
Prototype Nb$_{12}$O$_{29}$
AFLOW prototype label A12B29_oC164_63_6f_3c13f-001
ICSD 24089
Pearson symbol oC164
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A12B29_oC164_63_6f_3c13f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak y_{22}, \allowbreak z_{22}$

Other compounds with this structure

Ti$_{2}$Nb$_{10}$O$_{29}$


  • Nb$_{12}$O$_{29}$ is known to exist in a least two phases (Norin, 1963; Norin, 1966):
  • (Wadsley, 1961) earlier found that both known phases of Ti$_{2}$Nb$_{12}$O$_{29}$ are isostructural with the corresponding Nb$_{12}$O$_{29}$ phase, but as the titanium and niobium atoms are alloyed on the same site we use the binary Nb$_{12}$O$_{29}$ as the prototype.
  • (Norin, 1963) gives the structure of orthorhombic Nb$_{12}$O$_{29}$ in the $Amma$ setting of space group #63. We used FINDSYM to transform it to the standard $Cmcm$ setting.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) O I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O II
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) O II
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) Nb I
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb I
$\mathbf{B_{9}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb I
$\mathbf{B_{10}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) Nb I
$\mathbf{B_{11}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) Nb II
$\mathbf{B_{12}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb II
$\mathbf{B_{13}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb II
$\mathbf{B_{14}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8f) Nb II
$\mathbf{B_{15}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8f) Nb III
$\mathbf{B_{16}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb III
$\mathbf{B_{17}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb III
$\mathbf{B_{18}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8f) Nb III
$\mathbf{B_{19}}$ = $- y_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8f) Nb IV
$\mathbf{B_{20}}$ = $y_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb IV
$\mathbf{B_{21}}$ = $- y_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb IV
$\mathbf{B_{22}}$ = $y_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8f) Nb IV
$\mathbf{B_{23}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8f) Nb V
$\mathbf{B_{24}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb V
$\mathbf{B_{25}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb V
$\mathbf{B_{26}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8f) Nb V
$\mathbf{B_{27}}$ = $- y_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) Nb VI
$\mathbf{B_{28}}$ = $y_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb VI
$\mathbf{B_{29}}$ = $- y_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Nb VI
$\mathbf{B_{30}}$ = $y_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8f) Nb VI
$\mathbf{B_{31}}$ = $- y_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{32}}$ = $y_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{33}}$ = $- y_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{34}}$ = $y_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{35}}$ = $- y_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{36}}$ = $y_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{37}}$ = $- y_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{38}}$ = $y_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{39}}$ = $- y_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8f) O VI
$\mathbf{B_{40}}$ = $y_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VI
$\mathbf{B_{41}}$ = $- y_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VI
$\mathbf{B_{42}}$ = $y_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8f) O VI
$\mathbf{B_{43}}$ = $- y_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8f) O VII
$\mathbf{B_{44}}$ = $y_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VII
$\mathbf{B_{45}}$ = $- y_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VII
$\mathbf{B_{46}}$ = $y_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8f) O VII
$\mathbf{B_{47}}$ = $- y_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8f) O VIII
$\mathbf{B_{48}}$ = $y_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VIII
$\mathbf{B_{49}}$ = $- y_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O VIII
$\mathbf{B_{50}}$ = $y_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8f) O VIII
$\mathbf{B_{51}}$ = $- y_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8f) O IX
$\mathbf{B_{52}}$ = $y_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O IX
$\mathbf{B_{53}}$ = $- y_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O IX
$\mathbf{B_{54}}$ = $y_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8f) O IX
$\mathbf{B_{55}}$ = $- y_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $b y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8f) O X
$\mathbf{B_{56}}$ = $y_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O X
$\mathbf{B_{57}}$ = $- y_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O X
$\mathbf{B_{58}}$ = $y_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8f) O X
$\mathbf{B_{59}}$ = $- y_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $b y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8f) O XI
$\mathbf{B_{60}}$ = $y_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XI
$\mathbf{B_{61}}$ = $- y_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XI
$\mathbf{B_{62}}$ = $y_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- b y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8f) O XI
$\mathbf{B_{63}}$ = $- y_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $b y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8f) O XII
$\mathbf{B_{64}}$ = $y_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XII
$\mathbf{B_{65}}$ = $- y_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XII
$\mathbf{B_{66}}$ = $y_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- b y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8f) O XII
$\mathbf{B_{67}}$ = $- y_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $b y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8f) O XIII
$\mathbf{B_{68}}$ = $y_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XIII
$\mathbf{B_{69}}$ = $- y_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XIII
$\mathbf{B_{70}}$ = $y_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8f) O XIII
$\mathbf{B_{71}}$ = $- y_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $b y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8f) O XIV
$\mathbf{B_{72}}$ = $y_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XIV
$\mathbf{B_{73}}$ = $- y_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XIV
$\mathbf{B_{74}}$ = $y_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- b y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8f) O XIV
$\mathbf{B_{75}}$ = $- y_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $b y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8f) O XV
$\mathbf{B_{76}}$ = $y_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XV
$\mathbf{B_{77}}$ = $- y_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XV
$\mathbf{B_{78}}$ = $y_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- b y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8f) O XV
$\mathbf{B_{79}}$ = $- y_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $b y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8f) O XVI
$\mathbf{B_{80}}$ = $y_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XVI
$\mathbf{B_{81}}$ = $- y_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O XVI
$\mathbf{B_{82}}$ = $y_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- b y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8f) O XVI

References


Prototype Generator

aflow --proto=A12B29_oC164_63_6f_3c13f --params=$a,b/a,c/a,y_{1},y_{2},y_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6},y_{7},z_{7},y_{8},z_{8},y_{9},z_{9},y_{10},z_{10},y_{11},z_{11},y_{12},z_{12},y_{13},z_{13},y_{14},z_{14},y_{15},z_{15},y_{16},z_{16},y_{17},z_{17},y_{18},z_{18},y_{19},z_{19},y_{20},z_{20},y_{21},z_{21},y_{22},z_{22}$

Species:

Running:

Output: