AFLOW Prototype: A12B_tI26_139_fij_a-001
This structure originally had the label A12B_tI26_139_fij_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/AJGV
or
https://aflow.org/p/A12B_tI26_139_fij_a-001
or
PDF Version
Prototype | Mn$_{12}$Th |
AFLOW prototype label | A12B_tI26_139_fij_a-001 |
Strukturbericht designation | $D2_{b}$ |
ICSD | 104986 |
Pearson symbol | tI26 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A12B_tI26_139_fij_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}$ |
Be$_{12}$Ag, Be$_{12}$Co, Be$_{12}$Cr, Be$_{12}$Fe, Be$_{12}$Mn, Be$_{12}$Mo, Be$_{12}$Nb, Be$_{12}$Pd, Be$_{12}$Pt, Be$_{12}$Th, Be$_{12}$Ti, Be$_{12}$V, Be$_{12}$W, Mg$_{12}$Ce, Mg$_{12}$Nd, Mg$_{12}$Pr, Mn$_{12}$Y, Al$_{8}$Cr$_{4}$Er, Al$_{8}$Cu$_{4}$Ce, Al$_{8}$Mn$_{4}$Ce, Mn$_{8}$Fe$_{4}$, Fe$_{7}$Mn$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Th I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Mn I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Mn I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Mn I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Mn I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (8i) | Mn II |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (8i) | Mn II |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (8i) | Mn II |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (8i) | Mn II |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8j) | Mn III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8j) | Mn III |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (8j) | Mn III |
$\mathbf{B_{13}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (8j) | Mn III |