Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A13B6C24D4_hP188_184_2a4d_2d_8d_bd-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7PRY
or https://aflow.org/p/A13B6C24D4_hP188_184_2a4d_2d_8d_bd-001
or PDF Version

NaTi$_{2}$(PS$_{4}$)$_{3}$ Structure: A13B6C24D4_hP188_184_2a4d_2d_8d_bd-001

Picture of Structure; Click for Big Picture
Prototype NaP$_{3}$S$_{12}$Ti$_{2}$
AFLOW prototype label A13B6C24D4_hP188_184_2a4d_2d_8d_bd-001
ICSD 81997
Pearson symbol hP188
Space group number 184
Space group symbol $P6cc$
AFLOW prototype command aflow --proto=A13B6C24D4_hP188_184_2a4d_2d_8d_bd-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}$

  • None of the sodium sites is even half filled. The occupations are: Na-I 23%, Na-II 35%, Na-III 25%, Na-IV 10%, and Na-V 9%. The phosphorous, sulfur, and titanium sites are all filled.
  • Space group $P6cc$ #184 allows an arbitrary origin for the $z$-axis. We choose $z_{3} = 0$ for the Ti-I site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Na I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Na I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Na II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Na II
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Ti I
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Ti I
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4b) Ti I
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4b) Ti I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{10}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{11}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{14}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{15}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{16}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{18}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{19}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{20}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na III
$\mathbf{B_{21}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{22}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{23}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{24}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{25}}$ = $y_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{26}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{27}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{28}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{29}}$ = $x_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{30}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{31}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{32}}$ = $- x_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na IV
$\mathbf{B_{33}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{34}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{35}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{36}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{37}}$ = $y_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{38}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{39}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{40}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{41}}$ = $x_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{42}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{43}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{44}}$ = $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na V
$\mathbf{B_{45}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{46}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{47}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{48}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{49}}$ = $y_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{50}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{51}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{52}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{53}}$ = $x_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{54}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{55}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{56}}$ = $- x_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Na VI
$\mathbf{B_{57}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{58}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{59}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{60}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{61}}$ = $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{62}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{63}}$ = $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{64}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{65}}$ = $x_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{66}}$ = $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{67}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{68}}$ = $- x_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P I
$\mathbf{B_{69}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{70}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{71}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{72}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{73}}$ = $y_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{74}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{75}}$ = $- y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{76}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{77}}$ = $x_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{78}}$ = $y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{79}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{80}}$ = $- x_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) P II
$\mathbf{B_{81}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{82}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{83}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{84}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{85}}$ = $y_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{86}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{87}}$ = $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{88}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{89}}$ = $x_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{90}}$ = $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{91}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{92}}$ = $- x_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S I
$\mathbf{B_{93}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{94}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{95}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{96}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{97}}$ = $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{98}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{99}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{100}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{101}}$ = $x_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{102}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{103}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{104}}$ = $- x_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S II
$\mathbf{B_{105}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{106}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{107}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{108}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{109}}$ = $y_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{110}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{111}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{112}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{113}}$ = $x_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{114}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{115}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{116}}$ = $- x_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S III
$\mathbf{B_{117}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{118}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{119}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{120}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{121}}$ = $y_{13} \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{13} + 2 y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{122}}$ = $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{123}}$ = $- y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{124}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{13} + 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{125}}$ = $x_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{126}}$ = $y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{127}}$ = $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{128}}$ = $- x_{13} \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S IV
$\mathbf{B_{129}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{130}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{131}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{132}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{133}}$ = $y_{14} \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{14} + 2 y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{134}}$ = $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{135}}$ = $- y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{136}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{14} + 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{137}}$ = $x_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{138}}$ = $y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{139}}$ = $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{140}}$ = $- x_{14} \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S V
$\mathbf{B_{141}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{142}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{143}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{144}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{145}}$ = $y_{15} \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{15} + 2 y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{146}}$ = $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{147}}$ = $- y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{148}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{15} + 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{149}}$ = $x_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{150}}$ = $y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{151}}$ = $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{152}}$ = $- x_{15} \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VI
$\mathbf{B_{153}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{154}}$ = $- y_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{155}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{156}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{157}}$ = $y_{16} \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{16} + 2 y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{158}}$ = $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{159}}$ = $- y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{160}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{16} + 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{161}}$ = $x_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{162}}$ = $y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{163}}$ = $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{164}}$ = $- x_{16} \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VII
$\mathbf{B_{165}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{166}}$ = $- y_{17} \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} - 2 y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{167}}$ = $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{168}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{169}}$ = $y_{17} \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{17} + 2 y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{170}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{171}}$ = $- y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{172}}$ = $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{17} + 2 y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{173}}$ = $x_{17} \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{174}}$ = $y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{175}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} - 2 y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{176}}$ = $- x_{17} \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) S VIII
$\mathbf{B_{177}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{18} + y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{18} - y_{18}\right) \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{178}}$ = $- y_{18} \, \mathbf{a}_{1}+\left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{18} - 2 y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{179}}$ = $- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{18} - y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{180}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{18} + y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{18} - y_{18}\right) \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{181}}$ = $y_{18} \, \mathbf{a}_{1}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{18} + 2 y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{182}}$ = $\left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{18} - y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{183}}$ = $- y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{18} + y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{18} - y_{18}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{184}}$ = $- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{18} + 2 y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{185}}$ = $x_{18} \, \mathbf{a}_{1}+\left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{18} - y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{186}}$ = $y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{18} + y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{18} - y_{18}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{187}}$ = $\left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{18} - 2 y_{18}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II
$\mathbf{B_{188}}$ = $- x_{18} \, \mathbf{a}_{1}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{18} - y_{18}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Ti II

References

  • X. Cieren, J. Angenault, J.-C. Couturier, S. Jaulmes, M. Quarton, and F. Robert, NaTi$_{2}$(PS$_{4}$)$_{3}$: A New Thiophosphate with an Interlocked Structure, J. Solid State Chem. 121, 230–235 (1996), doi:10.1006/jssc.1996.0032.

Prototype Generator

aflow --proto=A13B6C24D4_hP188_184_2a4d_2d_8d_bd --params=$a,c/a,z_{1},z_{2},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18}$

Species:

Running:

Output: