Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17B10_tP108_116_e8j_ad2g2h5i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/D8JE
or https://aflow.org/p/A17B10_tP108_116_e8j_ad2g2h5i-001
or PDF Version

Rh$_{10}$Ga$_{17}$ Structure: A17B10_tP108_116_e8j_ad2g2h5i-001

Picture of Structure; Click for Big Picture
Prototype Ga$_{17}$Rh$_{10}$
AFLOW prototype label A17B10_tP108_116_e8j_ad2g2h5i-001
ICSD 103949
Pearson symbol tP108
Space group number 116
Space group symbol $P\overline{4}c2$
AFLOW prototype command aflow --proto=A17B10_tP108_116_e8j_ad2g2h5i-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}$

  • We have shifted the origin used by (Vollenkle, 1967) to place the Rh I atom on the (2a) site rather than the (2b) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2a) Rh I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2a) Rh I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (2d) Rh II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) Rh II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4e) Ga I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4e) Ga I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4e) Ga I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4e) Ga I
$\mathbf{B_{9}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4g) Rh III
$\mathbf{B_{10}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4g) Rh III
$\mathbf{B_{11}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4g) Rh III
$\mathbf{B_{12}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4g) Rh III
$\mathbf{B_{13}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4g) Rh IV
$\mathbf{B_{14}}$ = $- z_{5} \, \mathbf{a}_{3}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4g) Rh IV
$\mathbf{B_{15}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4g) Rh IV
$\mathbf{B_{16}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4g) Rh IV
$\mathbf{B_{17}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4h) Rh V
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4h) Rh V
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Rh V
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Rh V
$\mathbf{B_{21}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4h) Rh VI
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (4h) Rh VI
$\mathbf{B_{23}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Rh VI
$\mathbf{B_{24}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) Rh VI
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4i) Rh VII
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (4i) Rh VII
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh VII
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh VII
$\mathbf{B_{29}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4i) Rh VIII
$\mathbf{B_{30}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (4i) Rh VIII
$\mathbf{B_{31}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh VIII
$\mathbf{B_{32}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh VIII
$\mathbf{B_{33}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4i) Rh IX
$\mathbf{B_{34}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (4i) Rh IX
$\mathbf{B_{35}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh IX
$\mathbf{B_{36}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh IX
$\mathbf{B_{37}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4i) Rh X
$\mathbf{B_{38}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (4i) Rh X
$\mathbf{B_{39}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh X
$\mathbf{B_{40}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh X
$\mathbf{B_{41}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4i) Rh XI
$\mathbf{B_{42}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{12} \,\mathbf{\hat{z}}$ (4i) Rh XI
$\mathbf{B_{43}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh XI
$\mathbf{B_{44}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) Rh XI
$\mathbf{B_{45}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{46}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{47}}$ = $y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{48}}$ = $- y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{49}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{50}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{51}}$ = $y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{52}}$ = $- y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga II
$\mathbf{B_{53}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{54}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{55}}$ = $y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{56}}$ = $- y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{57}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{58}}$ = $- x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{59}}$ = $y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{60}}$ = $- y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga III
$\mathbf{B_{61}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{62}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{63}}$ = $y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{64}}$ = $- y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{65}}$ = $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{66}}$ = $- x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{67}}$ = $y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{68}}$ = $- y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IV
$\mathbf{B_{69}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{70}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{71}}$ = $y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{72}}$ = $- y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{73}}$ = $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{74}}$ = $- x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{75}}$ = $y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{76}}$ = $- y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga V
$\mathbf{B_{77}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{78}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{79}}$ = $y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{80}}$ = $- y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{81}}$ = $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{82}}$ = $- x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{83}}$ = $y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{84}}$ = $- y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VI
$\mathbf{B_{85}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{86}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{87}}$ = $y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{88}}$ = $- y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{89}}$ = $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{90}}$ = $- x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{91}}$ = $y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{92}}$ = $- y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VII
$\mathbf{B_{93}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{94}}$ = $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{95}}$ = $y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{96}}$ = $- y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{97}}$ = $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{98}}$ = $- x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{99}}$ = $y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{100}}$ = $- y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga VIII
$\mathbf{B_{101}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{102}}$ = $- x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{103}}$ = $y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{104}}$ = $- y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{105}}$ = $x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{106}}$ = $- x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{107}}$ = $y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IX
$\mathbf{B_{108}}$ = $- y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Ga IX

References

  • H. Völlenkle, A. Wittmann, and H. Nowotny, Die Kristallstrukturen von Rh$_{10}$Ga$_{17}$ und Ir$_{3}$Ga$_{5}$, Monatsh. Chem 98, 176–183 (1967), doi:10.1007/BF00901115.

Prototype Generator

aflow --proto=A17B10_tP108_116_e8j_ad2g2h5i --params=$a,c/a,x_{3},z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20}$

Species:

Running:

Output: