Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17B15_cP64_207_acfk_eij-001

This structure originally had the label A17B15_cP64_207_acfk_eij. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/8LH0
or https://aflow.org/p/A17B15_cP64_207_acfk_eij-001
or PDF Version

Palladseite (Pd$_{17}$Se$_{15}$) Structure: A17B15_cP64_207_acfk_eij-001

Picture of Structure; Click for Big Picture
Prototype Pd$_{17}$Se$_{15}$
AFLOW prototype label A17B15_cP64_207_acfk_eij-001
Mineral name palladseite
ICSD none
Pearson symbol cP64
Space group number 207
Space group symbol $P432$
AFLOW prototype command aflow --proto=A17B15_cP64_207_acfk_eij-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

Rh$_{17}$S$_{15}$


  • (Geller, 1962) determined that Pd$_{17}$Se$_{15}$ could be in space group $Pm\overline{3}m$ #221, $P\overline{4}3m$ #215, or $P432$ #207 (this structure), and finds that $Pm\overline{3}m$ gives the best fit to single-crystal X-ray diffraction pattern, although the parameter fit for the all of the Wyckoff sites did not converge. We therefore present all three structure possibilities.
  • We shifted the coordinates of (Geller, 1962) to move the Pd-I atom from the center of the cubic cell, Wyckoff position (1b), to the origin, Wyckoff position (1a).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Pd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Pd II
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Pd II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (3c) Pd II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}$ (6e) Se I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (6e) Se I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{y}}$ (6e) Se I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (6e) Se I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{z}}$ (6e) Se I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{z}}$ (6e) Se I
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (6f) Pd III
$\mathbf{B_{17}}$ = $y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{18}}$ = $- y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{19}}$ = $y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{20}}$ = $- y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{21}}$ = $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{22}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{23}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{24}}$ = $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{25}}$ = $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (12i) Se II
$\mathbf{B_{26}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ (12i) Se II
$\mathbf{B_{27}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (12i) Se II
$\mathbf{B_{28}}$ = $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ (12i) Se II
$\mathbf{B_{29}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{30}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{31}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{32}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{33}}$ = $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{34}}$ = $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{35}}$ = $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{36}}$ = $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{37}}$ = $y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{38}}$ = $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{39}}$ = $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{40}}$ = $- y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12j) Se III
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{42}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{43}}$ = $- x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{44}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{45}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{46}}$ = $z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{47}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{48}}$ = $- z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{49}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{50}}$ = $- y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{51}}$ = $y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{52}}$ = $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{53}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{54}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{55}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{56}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{57}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{58}}$ = $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{59}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{60}}$ = $x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{61}}$ = $z_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{62}}$ = $z_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{63}}$ = $- z_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV
$\mathbf{B_{64}}$ = $- z_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24k) Pd IV

References

Found in

  • D. Barthelmy, Mineralogy Database (2012). Palladseite Mineral Data.

Prototype Generator

aflow --proto=A17B15_cP64_207_acfk_eij --params=$a,x_{3},x_{4},y_{5},y_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: