Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17B4_cF420_216_a6efg4h_2efg-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/4E2L
or https://aflow.org/p/A17B4_cF420_216_a6efg4h_2efg-001
or PDF Version

Li$_{17}$Pb$_{4}$ Structure: A17B4_cF420_216_a6efg4h_2efg-001

Picture of Structure; Click for Big Picture
Prototype Li$_{17}$Pb$_{4}$
AFLOW prototype label A17B4_cF420_216_a6efg4h_2efg-001
ICSD 107216
Pearson symbol cF420
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A17B4_cF420_216_a6efg4h_2efg-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak x_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak z_{17}$

Other compounds with this structure

Li$_{17}$Ge$_{4}$,  Li$_{17}$Si$_{4}$,  Li$_{17}$Sn$_{4}$


  • (Goward, 2001) propose this as a replacement for the Li$_{22}$Si$_{5}$ structure. The change in stoichiometry is accounted for by placing extra lithium atoms on the the (4c) site $(1/4 1/4 1/4)$ and an additional (16e) site $(x x x)$, adjusting the stoichiometry to fit Li$_{21}$M$_{5}$ or Li$_{22}$M$_{5}$ as needed. Phase diagrams quoted in (Villars, 2018) support this change.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Li I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Li II
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Li II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Li II
$\mathbf{B_{5}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Li II
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{9}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{13}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{14}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{17}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{18}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{20}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{21}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{22}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{23}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- 3 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{24}}$ = $x_{7} \, \mathbf{a}_{1}- 3 x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{25}}$ = $- 3 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{26}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Pb I
$\mathbf{B_{27}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- 3 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Pb I
$\mathbf{B_{28}}$ = $x_{8} \, \mathbf{a}_{1}- 3 x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Pb I
$\mathbf{B_{29}}$ = $- 3 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Pb I
$\mathbf{B_{30}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (16e) Pb II
$\mathbf{B_{31}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- 3 x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (16e) Pb II
$\mathbf{B_{32}}$ = $x_{9} \, \mathbf{a}_{1}- 3 x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (16e) Pb II
$\mathbf{B_{33}}$ = $- 3 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (16e) Pb II
$\mathbf{B_{34}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}$ (24f) Li VIII
$\mathbf{B_{35}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}$ (24f) Li VIII
$\mathbf{B_{36}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{y}}$ (24f) Li VIII
$\mathbf{B_{37}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{y}}$ (24f) Li VIII
$\mathbf{B_{38}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{z}}$ (24f) Li VIII
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{z}}$ (24f) Li VIII
$\mathbf{B_{40}}$ = $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}$ (24f) Pb III
$\mathbf{B_{41}}$ = $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}$ (24f) Pb III
$\mathbf{B_{42}}$ = $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{y}}$ (24f) Pb III
$\mathbf{B_{43}}$ = $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{y}}$ (24f) Pb III
$\mathbf{B_{44}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{z}}$ (24f) Pb III
$\mathbf{B_{45}}$ = $- x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{z}}$ (24f) Pb III
$\mathbf{B_{46}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{47}}$ = $x_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{48}}$ = $x_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{49}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{50}}$ = $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{51}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Li IX
$\mathbf{B_{52}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{53}}$ = $x_{13} \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{54}}$ = $x_{13} \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{55}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{56}}$ = $x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{57}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Pb IV
$\mathbf{B_{58}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{59}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{60}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{61}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{62}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{63}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{64}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{65}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{66}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{67}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{68}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{69}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Li X
$\mathbf{B_{70}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{71}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{72}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{73}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{74}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{75}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{76}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{77}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{78}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{79}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{80}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{81}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Li XI
$\mathbf{B_{82}}$ = $z_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+a z_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{83}}$ = $z_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+a z_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{84}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- a z_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{85}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- a z_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{86}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a z_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{87}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a z_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{88}}$ = $z_{16} \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a z_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{89}}$ = $z_{16} \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $- a z_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{90}}$ = $z_{16} \, \mathbf{a}_{1}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a z_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{91}}$ = $z_{16} \, \mathbf{a}_{1}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a z_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{92}}$ = $- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a z_{16} \,\mathbf{\hat{y}}- a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{93}}$ = $\left(2 x_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- \left(2 x_{16} + z_{16}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a z_{16} \,\mathbf{\hat{y}}+a x_{16} \,\mathbf{\hat{z}}$ (48h) Li XII
$\mathbf{B_{94}}$ = $z_{17} \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{95}}$ = $z_{17} \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{96}}$ = $\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{1}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{97}}$ = $- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- a z_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{98}}$ = $\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a z_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{99}}$ = $- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a z_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{100}}$ = $z_{17} \, \mathbf{a}_{1}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{2}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a z_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{101}}$ = $z_{17} \, \mathbf{a}_{1}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $- a z_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{102}}$ = $z_{17} \, \mathbf{a}_{1}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a z_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{103}}$ = $z_{17} \, \mathbf{a}_{1}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a z_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{104}}$ = $- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a z_{17} \,\mathbf{\hat{y}}- a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII
$\mathbf{B_{105}}$ = $\left(2 x_{17} - z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}- \left(2 x_{17} + z_{17}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a z_{17} \,\mathbf{\hat{y}}+a x_{17} \,\mathbf{\hat{z}}$ (48h) Li XIII

References

  • G. R. Goward, N. J. Taylor, D. C. S. Souza, and L. F. Nazar, The true crystal structure of Li$_{17}$M$_{4}$ (M=Ge, Sn, Pb)-revised from Li$_{22}$M$_{5}$, J. Alloys Compd. 329, 82–91 (2001), doi:10.1016/S0925-8388(01)01567-5.
  • P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Bismuth-Palladium Binary Phase Diagram (1994 Okamoto H.). Copyright © 2006-2018 ASM International.

Prototype Generator

aflow --proto=A17B4_cF420_216_a6efg4h_2efg --params=$a,x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},x_{13},x_{14},z_{14},x_{15},z_{15},x_{16},z_{16},x_{17},z_{17}$

Species:

Running:

Output: