Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17BC4D_tP184_89_17p_p_4p_il-001

This structure originally had the label A17BC4D_tP184_89_17p_p_4p_io. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/EK6P
or https://aflow.org/p/A17BC4D_tP184_89_17p_p_4p_il-001
or PDF Version

(CH)$_{17}$FeO$_{4}$Pt Structure (Original Page): A17BC4D_tP184_89_17p_p_4p_il-001

Picture of Structure; Click for Big Picture
Prototype C$_{17}$FeH$_{17}$O$_{4}$Pt
AFLOW prototype label A17BC4D_tP184_89_17p_p_4p_il-001
CCDC 863010
Pearson symbol tP184
Space group number 89
Space group symbol $P422$
AFLOW prototype command aflow --proto=A17BC4D_tP184_89_17p_p_4p_il-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}$

  • Structures exhibiting space group $P422$ #89 are quite rare. According to (Hoffmann, 2014) there are only two entries in the Inorganic Crystal Structure Database with space group #89; however the ones they list are incorrectly classified.
  • This structure was not explicitly referenced in (Tanaka, 2011), but the authors did deposit it in the Cambridge Structure Database (ID=863010).
  • This page (Hicks, 2019) does not include the hydrogen atom locations. Those are included on the A17BC17D4E_tP320_89_17p_p_17p_4p_il page.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4i) Pt I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{1} \,\mathbf{\hat{z}}$ (4i) Pt I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (4i) Pt I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{1} \,\mathbf{\hat{z}}$ (4i) Pt I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}$ (4l) Pt II
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (4l) Pt II
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{y}}$ (4l) Pt II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (4l) Pt II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{11}}$ = $- y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{14}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{15}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{16}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{19}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{20}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{21}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{22}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{23}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{24}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{25}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{26}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{27}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{28}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{29}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{30}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{31}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{32}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{33}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{34}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{35}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{36}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{37}}$ = $- x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{38}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{39}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{40}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{42}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{43}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{44}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{45}}$ = $- x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{46}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{47}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{48}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{49}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{50}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{51}}$ = $- y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{52}}$ = $y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{53}}$ = $- x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{54}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{55}}$ = $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{56}}$ = $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{57}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{58}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{59}}$ = $- y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{60}}$ = $y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{61}}$ = $- x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{62}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{63}}$ = $y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{64}}$ = $- y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{65}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{66}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{67}}$ = $- y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{68}}$ = $y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{69}}$ = $- x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{70}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{71}}$ = $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{72}}$ = $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{73}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{74}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{75}}$ = $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{76}}$ = $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{77}}$ = $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{78}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{79}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{80}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{81}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{82}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{83}}$ = $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{84}}$ = $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{85}}$ = $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{86}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{87}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{88}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{89}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{90}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{91}}$ = $- y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{92}}$ = $y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{93}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{94}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{95}}$ = $y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{96}}$ = $- y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{97}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{98}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{99}}$ = $- y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{100}}$ = $y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{101}}$ = $- x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{102}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{103}}$ = $y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{104}}$ = $- y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{105}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{106}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{107}}$ = $- y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{108}}$ = $y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{109}}$ = $- x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{110}}$ = $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{111}}$ = $y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{112}}$ = $- y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{113}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{114}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{115}}$ = $- y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{116}}$ = $y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{117}}$ = $- x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{118}}$ = $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{119}}$ = $y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{120}}$ = $- y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{121}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{122}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{123}}$ = $- y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{124}}$ = $y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{125}}$ = $- x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{126}}$ = $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{127}}$ = $y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{128}}$ = $- y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{129}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{130}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{131}}$ = $- y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{132}}$ = $y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{133}}$ = $- x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{134}}$ = $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{135}}$ = $y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{136}}$ = $- y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{137}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{138}}$ = $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{139}}$ = $- y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{140}}$ = $y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{141}}$ = $- x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{142}}$ = $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{143}}$ = $y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{144}}$ = $- y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVII
$\mathbf{B_{145}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{146}}$ = $- x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{147}}$ = $- y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{148}}$ = $y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{149}}$ = $- x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{150}}$ = $x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{151}}$ = $y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{152}}$ = $- y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) Fe I
$\mathbf{B_{153}}$ = $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}+a y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{154}}$ = $- x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}- a y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{155}}$ = $- y_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- a y_{21} \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{156}}$ = $y_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $a y_{21} \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{157}}$ = $- x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}+a y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{158}}$ = $x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}- a y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{159}}$ = $y_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $a y_{21} \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{160}}$ = $- y_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- a y_{21} \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) O I
$\mathbf{B_{161}}$ = $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}+a y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{162}}$ = $- x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}- a y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{163}}$ = $- y_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- a y_{22} \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{164}}$ = $y_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $a y_{22} \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{165}}$ = $- x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}+a y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{166}}$ = $x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}- a y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{167}}$ = $y_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $a y_{22} \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{168}}$ = $- y_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- a y_{22} \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) O II
$\mathbf{B_{169}}$ = $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}+a y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{170}}$ = $- x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}- a y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{171}}$ = $- y_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- a y_{23} \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{172}}$ = $y_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $a y_{23} \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{173}}$ = $- x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}+a y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{174}}$ = $x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}- a y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{175}}$ = $y_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $a y_{23} \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{176}}$ = $- y_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- a y_{23} \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) O III
$\mathbf{B_{177}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}+a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{178}}$ = $- x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}- a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{179}}$ = $- y_{24} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- a y_{24} \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{180}}$ = $y_{24} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $a y_{24} \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{181}}$ = $- x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}+a y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{182}}$ = $x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}- a y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{183}}$ = $y_{24} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $a y_{24} \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV
$\mathbf{B_{184}}$ = $- y_{24} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- a y_{24} \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) O IV

References

  • S. Tanaka and K. Mashima, Interaction of Ferrocene Moieties Across a Square Pt$_{4}$ Unit: Synthesis, Characterization, and Electrochemical Properties of Carboxylate-Bridged Bimetallic Pt$_{4}$Fe$_{n}$ ($n = 2, 3$, and 4) Complexes, Inorg. Chem. 50, 11384–11393 (2011), doi:10.1021/ic201012m.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Prototype Generator

aflow --proto=A17BC4D_tP184_89_17p_p_4p_il --params=$a,c/a,z_{1},x_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24}$

Species:

Running:

Output: