AFLOW Prototype: A18B2C3_cF184_227_fg_d_ac-001
This structure originally had the label A18B2C3_cF184_227_fg_d_ac. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/3DEV
or
https://aflow.org/p/A18B2C3_cF184_227_fg_d_ac-001
or
PDF Version
Prototype | Al$_{18}$Cr$_{2}$Mg$_{3}$ |
AFLOW prototype label | A18B2C3_cF184_227_fg_d_ac-001 |
ICSD | 57659 |
Pearson symbol | cF184 |
Space group number | 227 |
Space group symbol | $Fd\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A18B2C3_cF184_227_fg_d_ac-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}$ |
LaCr$_{2}$Al$_{20}$, CeCr$_{2}$Al$_{20}$, PrCr$_{2}$Al$_{20}$, SmCr$_{2}$Al$_{20}$, YbCr$_{2}$Al$_{20}$, CeTi$_{2}$Al$_{20}$, PrTi$_{2}$Al$_{20}$, SmTi$_{2}$Al$_{20}$, YbTi$_{2}$Al$_{20}$, CeV$_{2}$Al$_{20}$, GdV$_{2}$Al$_{20}$, LaV$_{2}$Al$_{20}$, PrV$_{2}$Al$_{20}$, SmV$_{2}$Al$_{20}$, CeNi$_{2}$Cd$_{20}$, GdNi$_{2}$Cd$_{20}$, LaNi$_{2}$Cd$_{20}$, NdNi$_{2}$Cd$_{20}$, PrNi$_{2}$Cd$_{20}$, SmNi$_{2}$Cd$_{20}$, YNi$_{2}$Cd$_{20}$, CePd$_{2}$Cd$_{20}$, PrPd$_{2}$Cd$_{20}$, SmPd$_{2}$Cd$_{20}$, UOs$_{2}$Zn$_{20}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | Mg I |
$\mathbf{B_{2}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ | = | $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ | (8a) | Mg I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (16c) | Mg II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (16c) | Mg II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Mg II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Mg II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (16d) | Cr I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (16d) | Cr I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16d) | Cr I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16d) | Cr I |
$\mathbf{B_{11}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{14}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{16}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{17}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{18}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{19}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{20}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{21}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{22}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | Al I |
$\mathbf{B_{23}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{24}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{25}}$ | = | $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{26}}$ | = | $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{27}}$ | = | $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{28}}$ | = | $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{29}}$ | = | $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{30}}$ | = | $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{31}}$ | = | $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{32}}$ | = | $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{33}}$ | = | $- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{34}}$ | = | $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{35}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{36}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{37}}$ | = | $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{38}}$ | = | $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{39}}$ | = | $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{40}}$ | = | $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{41}}$ | = | $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{42}}$ | = | $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{43}}$ | = | $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{44}}$ | = | $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{45}}$ | = | $\left(2 x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (96g) | Al II |
$\mathbf{B_{46}}$ | = | $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (96g) | Al II |