Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A19B44_tI252_122_ac4e_2d10e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/HB2V
or https://aflow.org/p/A19B44_tI252_122_ac4e_2d10e-001
or PDF Version

Ba$_{19}$Li$_{44}$ Structure: A19B44_tI252_122_ac4e_2d10e-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{19}$Li$_{44}$
AFLOW prototype label A19B44_tI252_122_ac4e_2d10e-001
ICSD 249574
Pearson symbol tI252
Space group number 122
Space group symbol $I\overline{4}2d$
AFLOW prototype command aflow --proto=A19B44_tI252_122_ac4e_2d10e-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Ba I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Ba I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (8c) Ba II
$\mathbf{B_{4}}$ = $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (8c) Ba II
$\mathbf{B_{5}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Ba II
$\mathbf{B_{6}}$ = $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Ba II
$\mathbf{B_{7}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8d) Li I
$\mathbf{B_{8}}$ = $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8d) Li I
$\mathbf{B_{9}}$ = $- \left(x_{3} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8d) Li I
$\mathbf{B_{10}}$ = $\left(x_{3} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8d) Li I
$\mathbf{B_{11}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8d) Li II
$\mathbf{B_{12}}$ = $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8d) Li II
$\mathbf{B_{13}}$ = $- \left(x_{4} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8d) Li II
$\mathbf{B_{14}}$ = $\left(x_{4} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8d) Li II
$\mathbf{B_{15}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{16}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{17}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{18}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{19}}$ = $\left(y_{5} - z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{20}}$ = $- \left(y_{5} + z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{21}}$ = $\left(- x_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{22}}$ = $\left(x_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba III
$\mathbf{B_{23}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{24}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{25}}$ = $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{26}}$ = $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{27}}$ = $\left(y_{6} - z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{28}}$ = $- \left(y_{6} + z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{29}}$ = $\left(- x_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{30}}$ = $\left(x_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba IV
$\mathbf{B_{31}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{32}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{33}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{34}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{35}}$ = $\left(y_{7} - z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{36}}$ = $- \left(y_{7} + z_{7} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{37}}$ = $\left(- x_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{38}}$ = $\left(x_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba V
$\mathbf{B_{39}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{40}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{41}}$ = $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{42}}$ = $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{43}}$ = $\left(y_{8} - z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{44}}$ = $- \left(y_{8} + z_{8} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{45}}$ = $\left(- x_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{46}}$ = $\left(x_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Ba VI
$\mathbf{B_{47}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{48}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{49}}$ = $- \left(x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{50}}$ = $\left(x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{51}}$ = $\left(y_{9} - z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{9} + z_{9} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{52}}$ = $- \left(y_{9} + z_{9} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{9} - z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{53}}$ = $\left(- x_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{54}}$ = $\left(x_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li III
$\mathbf{B_{55}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{56}}$ = $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{57}}$ = $- \left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{58}}$ = $\left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{59}}$ = $\left(y_{10} - z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{60}}$ = $- \left(y_{10} + z_{10} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{61}}$ = $\left(- x_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{62}}$ = $\left(x_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IV
$\mathbf{B_{63}}$ = $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{64}}$ = $- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{65}}$ = $- \left(x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{66}}$ = $\left(x_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{67}}$ = $\left(y_{11} - z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} + z_{11} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{68}}$ = $- \left(y_{11} + z_{11} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} - z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{69}}$ = $\left(- x_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{70}}$ = $\left(x_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li V
$\mathbf{B_{71}}$ = $\left(y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{72}}$ = $- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{73}}$ = $- \left(x_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{74}}$ = $\left(x_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{75}}$ = $\left(y_{12} - z_{12} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{12} + z_{12} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{76}}$ = $- \left(y_{12} + z_{12} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{12} - z_{12} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{77}}$ = $\left(- x_{12} + z_{12} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{12} + z_{12} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{78}}$ = $\left(x_{12} + z_{12} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{12} + z_{12} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VI
$\mathbf{B_{79}}$ = $\left(y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{80}}$ = $- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{81}}$ = $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{82}}$ = $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{83}}$ = $\left(y_{13} - z_{13} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{84}}$ = $- \left(y_{13} + z_{13} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{85}}$ = $\left(- x_{13} + z_{13} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{13} + z_{13} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{86}}$ = $\left(x_{13} + z_{13} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{13} + z_{13} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VII
$\mathbf{B_{87}}$ = $\left(y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{88}}$ = $- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{89}}$ = $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{90}}$ = $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{91}}$ = $\left(y_{14} - z_{14} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{92}}$ = $- \left(y_{14} + z_{14} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{93}}$ = $\left(- x_{14} + z_{14} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{14} + z_{14} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{94}}$ = $\left(x_{14} + z_{14} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{14} + z_{14} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li VIII
$\mathbf{B_{95}}$ = $\left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{96}}$ = $- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{97}}$ = $- \left(x_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{98}}$ = $\left(x_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{99}}$ = $\left(y_{15} - z_{15} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{15} + z_{15} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{15} + y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{100}}$ = $- \left(y_{15} + z_{15} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{15} - z_{15} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{101}}$ = $\left(- x_{15} + z_{15} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{15} + z_{15} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{102}}$ = $\left(x_{15} + z_{15} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{15} + z_{15} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li IX
$\mathbf{B_{103}}$ = $\left(y_{16} + z_{16}\right) \, \mathbf{a}_{1}+\left(x_{16} + z_{16}\right) \, \mathbf{a}_{2}+\left(x_{16} + y_{16}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{104}}$ = $- \left(y_{16} - z_{16}\right) \, \mathbf{a}_{1}- \left(x_{16} - z_{16}\right) \, \mathbf{a}_{2}- \left(x_{16} + y_{16}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{105}}$ = $- \left(x_{16} + z_{16}\right) \, \mathbf{a}_{1}+\left(y_{16} - z_{16}\right) \, \mathbf{a}_{2}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{106}}$ = $\left(x_{16} - z_{16}\right) \, \mathbf{a}_{1}- \left(y_{16} + z_{16}\right) \, \mathbf{a}_{2}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{107}}$ = $\left(y_{16} - z_{16} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{16} + z_{16} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{16} + y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{108}}$ = $- \left(y_{16} + z_{16} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{16} - z_{16} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{16} - y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{109}}$ = $\left(- x_{16} + z_{16} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{16} + z_{16} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{16} + y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{110}}$ = $\left(x_{16} + z_{16} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{16} + z_{16} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{16} + y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}+a \left(x_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li X
$\mathbf{B_{111}}$ = $\left(y_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} + y_{17}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{112}}$ = $- \left(y_{17} - z_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} - z_{17}\right) \, \mathbf{a}_{2}- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{113}}$ = $- \left(x_{17} + z_{17}\right) \, \mathbf{a}_{1}+\left(y_{17} - z_{17}\right) \, \mathbf{a}_{2}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{114}}$ = $\left(x_{17} - z_{17}\right) \, \mathbf{a}_{1}- \left(y_{17} + z_{17}\right) \, \mathbf{a}_{2}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{115}}$ = $\left(y_{17} - z_{17} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{17} + z_{17} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{17} + y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{116}}$ = $- \left(y_{17} + z_{17} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{17} - z_{17} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{17} - y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a \left(y_{17} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{117}}$ = $\left(- x_{17} + z_{17} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{17} + z_{17} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{17} + y_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- a \left(x_{17} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{118}}$ = $\left(x_{17} + z_{17} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{17} + z_{17} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{17} + y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+a \left(x_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XI
$\mathbf{B_{119}}$ = $\left(y_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} + y_{18}\right) \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{120}}$ = $- \left(y_{18} - z_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} - z_{18}\right) \, \mathbf{a}_{2}- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{121}}$ = $- \left(x_{18} + z_{18}\right) \, \mathbf{a}_{1}+\left(y_{18} - z_{18}\right) \, \mathbf{a}_{2}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{122}}$ = $\left(x_{18} - z_{18}\right) \, \mathbf{a}_{1}- \left(y_{18} + z_{18}\right) \, \mathbf{a}_{2}+\left(x_{18} - y_{18}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{123}}$ = $\left(y_{18} - z_{18} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{18} + z_{18} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{18} + y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+a \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{124}}$ = $- \left(y_{18} + z_{18} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{18} - z_{18} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{18} - y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- a \left(y_{18} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{125}}$ = $\left(- x_{18} + z_{18} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{18} + z_{18} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{18} + y_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}- a \left(x_{18} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XII
$\mathbf{B_{126}}$ = $\left(x_{18} + z_{18} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{18} + z_{18} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{18} + y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}+a \left(x_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16e) Li XII

References

  • V. Smetana, V. Babizhetskyy, G. V. Vajenine, C. Hoch, and A. Simon, Double-Icosahedral Li Clusters in a New Binary Compound Ba$_{19}$Li$_{44}$:  A Reinvestigation of the Ba−Li Phase Diagram, Inorg. Chem. 46, 5425–5428 (2007), doi:10.1021/ic070249i.

Found in


Prototype Generator

aflow --proto=A19B44_tI252_122_ac4e_2d10e --params=$a,c/a,z_{2},x_{3},x_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18}$

Species:

Running:

Output: