Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B2C7_cF88_227_c_d_af-001

This structure originally had the label A2B2C7_cF88_227_c_d_af. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/0R9R
or https://aflow.org/p/A2B2C7_cF88_227_c_d_af-001
or PDF Version

Pyrochlore Iridate (Eu$_{2}$Ir$_{2}$O$_{7}$, $E8_{1}$) Structure: A2B2C7_cF88_227_c_d_af-001

Picture of Structure; Click for Big Picture
Prototype Eu$_{2}$Ir$_{2}$O$_{7}$
AFLOW prototype label A2B2C7_cF88_227_c_d_af-001
Strukturbericht designation $E8_{1}$
Mineral name pyrochlore iridate
ICSD 135031
Pearson symbol cF88
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A2B2C7_cF88_227_c_d_af-001
--params=$a, \allowbreak x_{4}$

Other compounds with this structure

FNb$_{2}$(Nb,  Ca)$_{2}$O$_{6}$ (''synthetic'' pyrochlore),  (Nb,  Ta,  Ti)$_{2}$(Ca,  Ce,  Na,  K)$_{2}$(F,  O)$_{7}$ (``natural'' pyrhochlore),  (F,  O,  OH)(Nb,  Fe)$_{2}$(Ca,  Ce,  Na,  K)$_{2}$O$_{6}$ (Koppit),  (F,  OH)Sb$_{2}$(Ca,  Mn,  Na)$_{2}$O$_{6}$ (Rom\'{e}ite),  (OH)Sb$_{2}$(Ca,  Fe,  Na)$_{2}$O$_{6}$ (Scheebergite),  (Sb,  Ti)$_{2}$(Ca,  Fe,  Mn,  Na)$_{2}$(O,  OH)$_{6}$ (Lewisite),  (OH,  F)(Nb,  Ta,  Ti)$_{2}$(Ca,  Fe,  Na)$_{2}$O$_{6}$ (Pyrrhite),  (OH,  F)(Nb,  Ta)$_{2}$(Ca,  Fe,  Na)$_{2}$O$_{6}$ (Mikrolith),  Sb$_{2}$Pb$_{2}$O$_{7}$ (Bindheimite),  (H$_{2}$O)$_{0.875}$(Al$_{0.8125}$Mg$_{0.1875}$)$_{2}$Na$_{0.375}$[F$_{0.65}$(OH)$_{0.35}$]$_{6}$ (Ralstonite),  Sb$_{3}$O$_{6}$OH,  BiTa$_{2}$O$_{6}$F,  Sn$_{2}$Nb$_{2}$O$_{7}$,  Sn$_{2}$Nd$_{2}$O$_{7}$,  Sn$_{2}$Ta$_{2}$O$_{7}$,  Ca$_{2}$Nb$_{2}$O$_{7}$,  Ca$_{2}$Ru$_{2}$O$_{7}$,  Dy$_{2}$GaSbO$_{7}$,  In$_{2}$Ge$_{2}$O$_{7}$,  Pr$_{3}$IrO$_{7}$,  Y$_{2}$Mn$_{2}$O$_{7}$,  Yb$_{2}$Ir$_{2}$O$_{7}$


  • (Herrmann, 1943) uses Strukturbericht $E8_{1}$ to describe the cubic pyrochlore structures. These have the general formula R$_{2}$Q$_{2}$X$_{7}$, where the X atoms or radicals occupy the (4a) and (48f) sites, and the R and Q atoms occupy the (16c) and(16d) sites. In many cases the sites are only partially filled and/or have mixed chemistry. We use Eu$_{2}$Ir$_{2}$O$_{7}$ as our prototype because it represents a fully filled system.
  • We take our data from (Sagayama, 2013), but the ICSD entry is from the later work of (Nenoff, 2021).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{3}}$ = $0$ = $0$ (16c) Eu I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) Eu I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Eu I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Eu I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Ir I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Ir I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Ir I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Ir I
$\mathbf{B_{11}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{14}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{16}}$ = $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{17}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{21}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48f) O II
$\mathbf{B_{22}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (48f) O II

References

  • H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J. Ishikawa, E. O’Farrell, and S. Nakatsuji, Determination of long-range all-in-all-out ordering of Ir$^{4+}$ moments in a pyrochlore iridate Eu$_{2}$Ir$_{2}$O$_{7}$ by resonant x-ray diffraction, Phys. Rev. B 87, 100403 (2013), doi:10.1103/PhysRevB.87.100403.
  • C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).
  • T. M. Nenoff, D. X. Rademacher, M. A. Rodriguez, T. J. Garino, T. Subramani, and A. Navrotsky, Structure-Property and Thermodynamic Relationships in Rare Earth (Y, Eu, Pr) Iridate Pyrochlores, J. Solid State Chem. 299, 122163 (2021), doi:10.1016/j.jssc.2021.122163.

Found in

  • S. H. Chun, B. Yuan, D. Casa, J. Kim, C.-Y. Kim, Z. Tian, Y. Qiu, S. Nakatsuji, and Y.-J. Kim, Magnetic Excitations across the Metal-Insulator Transition in the Pyrochlore Iridate Eu$_{2}$Ir$_{2}$O$_{7}$, Phys. Rev. Lett. 120, 177203 (2018), doi:10.1103/PhysRevLett.120.177203.

Prototype Generator

aflow --proto=A2B2C7_cF88_227_c_d_af --params=$a,x_{4}$

Species:

Running:

Output: