AFLOW Prototype: A2B2C7_cF88_227_c_d_af-001
This structure originally had the label A2B2C7_cF88_227_c_d_af. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/0R9R
or
https://aflow.org/p/A2B2C7_cF88_227_c_d_af-001
or
PDF Version
Prototype | Eu$_{2}$Ir$_{2}$O$_{7}$ |
AFLOW prototype label | A2B2C7_cF88_227_c_d_af-001 |
Strukturbericht designation | $E8_{1}$ |
Mineral name | pyrochlore iridate |
ICSD | 135031 |
Pearson symbol | cF88 |
Space group number | 227 |
Space group symbol | $Fd\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A2B2C7_cF88_227_c_d_af-001
--params=$a, \allowbreak x_{4}$ |
FNb$_{2}$(Nb, Ca)$_{2}$O$_{6}$ (''synthetic'' pyrochlore), (Nb, Ta, Ti)$_{2}$(Ca, Ce, Na, K)$_{2}$(F, O)$_{7}$ (``natural'' pyrhochlore), (F, O, OH)(Nb, Fe)$_{2}$(Ca, Ce, Na, K)$_{2}$O$_{6}$ (Koppit), (F, OH)Sb$_{2}$(Ca, Mn, Na)$_{2}$O$_{6}$ (Rom\'{e}ite), (OH)Sb$_{2}$(Ca, Fe, Na)$_{2}$O$_{6}$ (Scheebergite), (Sb, Ti)$_{2}$(Ca, Fe, Mn, Na)$_{2}$(O, OH)$_{6}$ (Lewisite), (OH, F)(Nb, Ta, Ti)$_{2}$(Ca, Fe, Na)$_{2}$O$_{6}$ (Pyrrhite), (OH, F)(Nb, Ta)$_{2}$(Ca, Fe, Na)$_{2}$O$_{6}$ (Mikrolith), Sb$_{2}$Pb$_{2}$O$_{7}$ (Bindheimite), (H$_{2}$O)$_{0.875}$(Al$_{0.8125}$Mg$_{0.1875}$)$_{2}$Na$_{0.375}$[F$_{0.65}$(OH)$_{0.35}$]$_{6}$ (Ralstonite), Sb$_{3}$O$_{6}$OH, BiTa$_{2}$O$_{6}$F, Sn$_{2}$Nb$_{2}$O$_{7}$, Sn$_{2}$Nd$_{2}$O$_{7}$, Sn$_{2}$Ta$_{2}$O$_{7}$, Ca$_{2}$Nb$_{2}$O$_{7}$, Ca$_{2}$Ru$_{2}$O$_{7}$, Dy$_{2}$GaSbO$_{7}$, In$_{2}$Ge$_{2}$O$_{7}$, Pr$_{3}$IrO$_{7}$, Y$_{2}$Mn$_{2}$O$_{7}$, Yb$_{2}$Ir$_{2}$O$_{7}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ | = | $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ | (8a) | O I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (16c) | Eu I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (16c) | Eu I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Eu I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Eu I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (16d) | Ir I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (16d) | Ir I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16d) | Ir I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16d) | Ir I |
$\mathbf{B_{11}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{14}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{16}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{17}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{18}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{19}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{20}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{21}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (48f) | O II |
$\mathbf{B_{22}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ | (48f) | O II |