AFLOW Prototype: A2B2C_tI10_139_d_e_a-002
This structure originally had the label A2B2C_tI10_139_d_e_a.TlCo2S2. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/D85X
or
https://aflow.org/p/A2B2C_tI10_139_d_e_a-002
or
PDF Version
Prototype | Co$_{2}$S$_{2}$Tl |
AFLOW prototype label | A2B2C_tI10_139_d_e_a-002 |
ICSD | 100438 |
Pearson symbol | tI10 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A2B2C_tI10_139_d_e_a-002
--params=$a, \allowbreak c/a, \allowbreak z_{3}$ |
BaCr$_{2}$As$_{2}$, BaFe$_{2}$As$_{2}$, BaMn$_{2}$Bi$_{2}$, BaP$_{2}$Zn$_{2}$, BaSr$_{2}$As$_{2}$, BaCo$_{2}$As$_{2}$, BiCe$_{2}$O$_{2}$, BiTh$_{2}$N$_{2}$, BiU$_{2}$N$_{2}$, CaCo$_{2}$As$_{2}$, SrCo$_{2}$As$_{2}$, EuCo$_{2}$As$_{2}$, EuFe$4_{2}$As$_{2}$, CsCo$_{2}$Se$_{2}$, KCo$_{2}$As$_{2}$, KCo$_{2}$P$_{2}$, KCo$_{2}$Se$_{2}$, KFe$_{2}$As$_{2}$, KFe$_{2}$P$_{2}$, KRh$_{2}$As$_{2}$, KRh$_{2}$P$_{2}$, RbCo$_{2}$Se$_{2}$, RbFe$_{2}$As$_{2}$, RbNi$_{2}$Se$_{2}$, SbTh$_{2}$N$_{2}$, SbU$_{2}$N$_{2}$, SeBi$_{2}$O$_{2}$, SeBi$_{2}$O$_{2}$, TeBi$_{2}$O$_{2}$, TeCe$_{2}$O$_{2}$, TeDy$_{2}$O$_{2}$, TeEr$_{2}$O$_{2}$, TeLu$_{2}$O$_{2}$, TeTb$_{2}$O$_{2}$, TeY$_{2}$O$_{2}$, TeTh$_{2}$N$_{2}$, TeU$_{2}$N$_{2}$, TlCo$_{2}$Se$_{2}$, TlCu$_{2}$S$_{2}$, TlCu$_{2}$Se$_{2}$, TlCu$_{2}$Te$_{2}$, TlFe$_{2}$S$_{2}$, TlFe$_{2}$Se$_{2}$, TlNi$_{2}$S$_{2}$, TlNi$_{2}$Se$_{2}$, Cl(Li$_{0.25}$Be$_{0.75}$)$_{2}$O$_{2}$, Cl(Na$_{0.25}$Be$_{0.75}$)$_{2}$O$_{2}$, EuFe$_{2}$(As$_{0.8}$P$_{0.2}$)$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Tl I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Co I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Co I |
$\mathbf{B_{4}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | S I |
$\mathbf{B_{5}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | S I |