Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3C2_cP224_223_abcdefk_j3k_il-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/UWQ4
or https://aflow.org/p/A2B3C2_cP224_223_abcdefk_j3k_il-001
or PDF Version

β-Hg$_{3}$S$_{2}$Cl$_{2}$ Structure: A2B3C2_cP224_223_abcdefk_j3k_il-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$Hg$_{3}$S$_{2}$
AFLOW prototype label A2B3C2_cP224_223_abcdefk_j3k_il-001
ICSD 83407
Pearson symbol cP224
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A2B3C2_cP224_223_abcdefk_j3k_il-001
--params=$a, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak y_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cl I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Cl I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Cl II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Cl II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Cl II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Cl II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Cl II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Cl II
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Cl III
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Cl III
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) Cl III
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) Cl III
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) Cl III
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) Cl III
$\mathbf{B_{15}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6d) Cl IV
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6d) Cl IV
$\mathbf{B_{17}}$ = $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) Cl IV
$\mathbf{B_{18}}$ = $\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6d) Cl IV
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6d) Cl IV
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6d) Cl IV
$\mathbf{B_{21}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{22}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{23}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{24}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{25}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{26}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{27}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{28}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Cl V
$\mathbf{B_{29}}$ = $x_{6} \, \mathbf{a}_{1}$ = $a x_{6} \,\mathbf{\hat{x}}$ (12f) Cl VI
$\mathbf{B_{30}}$ = $- x_{6} \, \mathbf{a}_{1}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (12f) Cl VI
$\mathbf{B_{31}}$ = $x_{6} \, \mathbf{a}_{2}$ = $a x_{6} \,\mathbf{\hat{y}}$ (12f) Cl VI
$\mathbf{B_{32}}$ = $- x_{6} \, \mathbf{a}_{2}$ = $- a x_{6} \,\mathbf{\hat{y}}$ (12f) Cl VI
$\mathbf{B_{33}}$ = $x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{34}}$ = $- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{35}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{36}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{37}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{38}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{39}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{40}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12f) Cl VI
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{42}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{43}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{44}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{45}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{46}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{47}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{48}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{49}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{50}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{51}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{52}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{53}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{54}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{55}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{56}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) S I
$\mathbf{B_{57}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{58}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{59}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{60}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{61}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{62}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{63}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{64}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{65}}$ = $y_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{66}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{67}}$ = $y_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{68}}$ = $- y_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{69}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{70}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{71}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{72}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{73}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{74}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{75}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{76}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{77}}$ = $- y_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{78}}$ = $y_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{79}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{80}}$ = $y_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (24j) Hg I
$\mathbf{B_{81}}$ = $y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{82}}$ = $- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{83}}$ = $y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{84}}$ = $- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{85}}$ = $z_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{86}}$ = $z_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{87}}$ = $- z_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{88}}$ = $- z_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{89}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}$ (24k) Cl VII
$\mathbf{B_{90}}$ = $- y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}$ = $- a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}$ (24k) Cl VII
$\mathbf{B_{91}}$ = $y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}$ = $a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}$ (24k) Cl VII
$\mathbf{B_{92}}$ = $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}$ = $- a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}$ (24k) Cl VII
$\mathbf{B_{93}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{94}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{95}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{96}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{97}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{98}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{99}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{100}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{101}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{102}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{103}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{104}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Cl VII
$\mathbf{B_{105}}$ = $y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{106}}$ = $- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{107}}$ = $y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{108}}$ = $- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{109}}$ = $z_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{110}}$ = $z_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{111}}$ = $- z_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{112}}$ = $- z_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{113}}$ = $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}$ = $a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}$ (24k) Hg II
$\mathbf{B_{114}}$ = $- y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}$ = $- a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}$ (24k) Hg II
$\mathbf{B_{115}}$ = $y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}$ = $a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}$ (24k) Hg II
$\mathbf{B_{116}}$ = $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}$ = $- a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}$ (24k) Hg II
$\mathbf{B_{117}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{118}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{119}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{120}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{121}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{122}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{123}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{124}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{125}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{126}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{127}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{128}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg II
$\mathbf{B_{129}}$ = $y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{130}}$ = $- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{131}}$ = $y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{132}}$ = $- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{133}}$ = $z_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{134}}$ = $z_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{135}}$ = $- z_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{136}}$ = $- z_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{137}}$ = $y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}$ = $a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}$ (24k) Hg III
$\mathbf{B_{138}}$ = $- y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}$ = $- a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}$ (24k) Hg III
$\mathbf{B_{139}}$ = $y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}$ = $a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}$ (24k) Hg III
$\mathbf{B_{140}}$ = $- y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}$ = $- a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}$ (24k) Hg III
$\mathbf{B_{141}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{142}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{143}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{144}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{145}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{146}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{147}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{148}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{149}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{150}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{151}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{152}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg III
$\mathbf{B_{153}}$ = $y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{154}}$ = $- y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{155}}$ = $y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{156}}$ = $- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{157}}$ = $z_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{158}}$ = $z_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{159}}$ = $- z_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{160}}$ = $- z_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{161}}$ = $y_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}$ = $a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}$ (24k) Hg IV
$\mathbf{B_{162}}$ = $- y_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}$ = $- a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}$ (24k) Hg IV
$\mathbf{B_{163}}$ = $y_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}$ = $a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}$ (24k) Hg IV
$\mathbf{B_{164}}$ = $- y_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}$ = $- a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}$ (24k) Hg IV
$\mathbf{B_{165}}$ = $\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{166}}$ = $- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{167}}$ = $\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{168}}$ = $- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{169}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{170}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{171}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{172}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{173}}$ = $\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{174}}$ = $\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{175}}$ = $- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{176}}$ = $- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Hg IV
$\mathbf{B_{177}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{178}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{179}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{180}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{181}}$ = $z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{182}}$ = $z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{183}}$ = $- z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{184}}$ = $- z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{185}}$ = $y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{186}}$ = $- y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{187}}$ = $y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{188}}$ = $- y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{189}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{190}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{191}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{192}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{193}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{194}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{195}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{196}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{197}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{198}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{199}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{200}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{201}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{202}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{203}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{204}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{205}}$ = $- z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{206}}$ = $- z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{207}}$ = $z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{208}}$ = $z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{209}}$ = $- y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{210}}$ = $y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{211}}$ = $- y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{212}}$ = $y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{213}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{214}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{215}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{216}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{217}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{218}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{219}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{220}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{221}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{222}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{223}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II
$\mathbf{B_{224}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48l) S II

References

  • V. A. Khudolii, V. V. Pan'ko, M. S. Shelemba, L. I. Lopit, A. S. Fedor, and Y. V. Voroshilov, Phase Equilibria in the Systems HgS-HgSe-HgCl$_{2}$(HgBr$_{2}$), Russ. J. Inorg. Chem. 38, 1479–1480 (1993).
  • E. H. Carlson, The growth of HgS and Hg$_{3}$S$_{2}$Cl$_{2}$ single crystals by a vapor phase method 1, 271–277 (1967), doi:10.1016/0022-0248(67)90033-4.

Found in

  • S. A. Magarill, N. V. Pervukhina, S. V. Borisov, and N. A. Pal'chik, Crystal chemistry and features of the structure formation of mercury oxo- and chalcohalides, Russ. Chem. Rev. 76, 101–131 (2007), doi:10.1070/RC2007v076n02ABEH003653.

Prototype Generator

aflow --proto=A2B3C2_cP224_223_abcdefk_j3k_il --params=$a,x_{6},x_{7},y_{8},y_{9},z_{9},y_{10},z_{10},y_{11},z_{11},y_{12},z_{12},x_{13},y_{13},z_{13}$

Species:

Running:

Output: