AFLOW Prototype: A2B3C7D_oP13_47_k_cj_aijl_f-001
This structure originally had the label A2B3C7D_oP13_47_t_aq_eqrs_h. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/MZYC
or
https://aflow.org/p/A2B3C7D_oP13_47_k_cj_aijl_f-001
or
PDF Version
Prototype | Ba$_{2}$Cu$_{3}$O$_{7-x}$Y |
AFLOW prototype label | A2B3C7D_oP13_47_k_cj_aijl_f-001 |
ICSD | 62943 |
Pearson symbol | oP13 |
Space group number | 47 |
Space group symbol | $Pmmm$ |
AFLOW prototype command |
aflow --proto=A2B3C7D_oP13_47_k_cj_aijl_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}$ |
GaSr$_{2}$(Y, Ca)Cu$_{2}$O$_{7}$, DyBa$_{2}$Cu$_{3}$O$_{7-x}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1c) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (1f) | Y I |
$\mathbf{B_{4}}$ | = | $x_{4} \, \mathbf{a}_{1}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (2i) | O II |
$\mathbf{B_{5}}$ | = | $- x_{4} \, \mathbf{a}_{1}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (2i) | O II |
$\mathbf{B_{6}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2j) | Cu II |
$\mathbf{B_{7}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2j) | Cu II |
$\mathbf{B_{8}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2j) | O III |
$\mathbf{B_{9}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2j) | O III |
$\mathbf{B_{10}}$ | = | $x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (2k) | Ba I |
$\mathbf{B_{11}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (2k) | Ba I |
$\mathbf{B_{12}}$ | = | $x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2l) | O IV |
$\mathbf{B_{13}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2l) | O IV |