AFLOW Prototype: A2B3C_oF96_70_2e_fh_e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/7WUP
or
https://aflow.org/p/A2B3C_oF96_70_2e_fh_e-001
or
PDF Version
Prototype | Na$_{2}$O$_{3}$Pt |
AFLOW prototype label | A2B3C_oF96_70_2e_fh_e-001 |
ICSD | 25020 |
Pearson symbol | oF96 |
Space group number | 70 |
Space group symbol | $Fddd$ |
AFLOW prototype command |
aflow --proto=A2B3C_oF96_70_2e_fh_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$ |
$\beta$-Li$_{2}$IrO$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na I |
$\mathbf{B_{3}}$ | = | $\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na I |
$\mathbf{B_{5}}$ | = | $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na II |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na II |
$\mathbf{B_{7}}$ | = | $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na II |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Na II |
$\mathbf{B_{9}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Pt I |
$\mathbf{B_{10}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Pt I |
$\mathbf{B_{11}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Pt I |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Pt I |
$\mathbf{B_{13}}$ | = | $y_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | O I |
$\mathbf{B_{14}}$ | = | $- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | O I |
$\mathbf{B_{15}}$ | = | $- y_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | O I |
$\mathbf{B_{16}}$ | = | $\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | O I |
$\mathbf{B_{17}}$ | = | $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{18}}$ | = | $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{19}}$ | = | $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{20}}$ | = | $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{21}}$ | = | $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{22}}$ | = | $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{23}}$ | = | $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | O II |
$\mathbf{B_{24}}$ | = | $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32h) | O II |
K$_{2}$PtO$_{3}$und
Rb$_{2}$PtO$_{3}$, Z. Anorganische und Allgemeine Chemie 392, 23–36 (1972), doi:10.1002/zaac.19723920104.