AFLOW Prototype: A2B3_mP30_11_6e_9e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/TWS9
or
https://aflow.org/p/A2B3_mP30_11_6e_9e-001
or
PDF Version
Prototype | Ho$_{2}$S$_{3}$ |
AFLOW prototype label | A2B3_mP30_11_6e_9e-001 |
ICSD | 22252 |
Pearson symbol | mP30 |
Space group number | 11 |
Space group symbol | $P2_1/m$ |
AFLOW prototype command |
aflow --proto=A2B3_mP30_11_6e_9e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}$ |
Dy$_{2}$S$_{3}$, Er$_{2}$S$_{3}$, Tm$_{2}$S$_{3}$, Y$_{2}$S$_{3}$, $\delta$-Yb$_{2}$S$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho III |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho IV |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho IV |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho V |
$\mathbf{B_{10}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho V |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho VI |
$\mathbf{B_{12}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | Ho VI |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S I |
$\mathbf{B_{14}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S I |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S II |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S II |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S III |
$\mathbf{B_{18}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S III |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S IV |
$\mathbf{B_{20}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S IV |
$\mathbf{B_{21}}$ | = | $x_{11} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S V |
$\mathbf{B_{22}}$ | = | $- x_{11} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S V |
$\mathbf{B_{23}}$ | = | $x_{12} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VI |
$\mathbf{B_{24}}$ | = | $- x_{12} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VI |
$\mathbf{B_{25}}$ | = | $x_{13} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VII |
$\mathbf{B_{26}}$ | = | $- x_{13} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VII |
$\mathbf{B_{27}}$ | = | $x_{14} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VIII |
$\mathbf{B_{28}}$ | = | $- x_{14} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S VIII |
$\mathbf{B_{29}}$ | = | $x_{15} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S IX |
$\mathbf{B_{30}}$ | = | $- x_{15} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | S IX |
PAULING FILE Multinaries Edition – 2012, Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan (2016). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan.