AFLOW Prototype: A2B3_oC40_39_2d_2c2d-001
This structure originally had the label A2B3_oC40_39_2d_2c2d. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/4YG0
or
https://aflow.org/p/A2B3_oC40_39_2d_2c2d-001
or
PDF Version
Prototype | S$_{2}$Ta$_{3}$ |
AFLOW prototype label | A2B3_oC40_39_2d_2c2d-001 |
ICSD | 71143 |
Pearson symbol | oC40 |
Space group number | 39 |
Space group symbol | $Aem2$ |
AFLOW prototype command |
aflow --proto=A2B3_oC40_39_2d_2c2d-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4c) | Ta I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4c) | Ta I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4c) | Ta II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4c) | Ta II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8d) | S I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8d) | S I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8d) | S I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8d) | S I |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8d) | S II |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8d) | S II |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8d) | S II |
$\mathbf{B_{12}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8d) | S II |
$\mathbf{B_{13}}$ | = | $x_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8d) | Ta III |
$\mathbf{B_{14}}$ | = | $- x_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8d) | Ta III |
$\mathbf{B_{15}}$ | = | $x_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8d) | Ta III |
$\mathbf{B_{16}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8d) | Ta III |
$\mathbf{B_{17}}$ | = | $x_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8d) | Ta IV |
$\mathbf{B_{18}}$ | = | $- x_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8d) | Ta IV |
$\mathbf{B_{19}}$ | = | $x_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8d) | Ta IV |
$\mathbf{B_{20}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8d) | Ta IV |