Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_tI160_142_deg_3g-001

This structure originally had the label A2B3_tI160_142_deg_3g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/1P80
or https://aflow.org/p/A2B3_tI160_142_deg_3g-001
or PDF Version

Cd$_{3}$As$_{2}$ Structure: A2B3_tI160_142_deg_3g-001

Picture of Structure; Click for Big Picture
Prototype As$_{2}$Cd$_{3}$
AFLOW prototype label A2B3_tI160_142_deg_3g-001
ICSD 238075
Pearson symbol tI160
Space group number 142
Space group symbol $I4_1/acd$
AFLOW prototype command aflow --proto=A2B3_tI160_142_deg_3g-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

Other compounds with this structure

Zn$_{3}$As$_{2}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{3}}$ = $- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{4}}$ = $- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{5}}$ = $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{6}}$ = $- z_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{7}}$ = $\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{8}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16d) As I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ (16e) As II
$\mathbf{B_{13}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{14}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{15}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{16}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (16e) As II
$\mathbf{B_{17}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{18}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{19}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{20}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{21}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{22}}$ = $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{23}}$ = $\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{24}}$ = $- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{25}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{26}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{27}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{28}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{29}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{30}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{31}}$ = $\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{32}}$ = $\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) As III
$\mathbf{B_{33}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{34}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{35}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{36}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{37}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{38}}$ = $- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{39}}$ = $\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{40}}$ = $- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{41}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{42}}$ = $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{43}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{44}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{45}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{46}}$ = $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{47}}$ = $\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{48}}$ = $\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd I
$\mathbf{B_{49}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{50}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{51}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{52}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{53}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{54}}$ = $- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{55}}$ = $\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{56}}$ = $- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{57}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{58}}$ = $\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{59}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{60}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{61}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{62}}$ = $\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{63}}$ = $\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{64}}$ = $\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd II
$\mathbf{B_{65}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{66}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{67}}$ = $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{68}}$ = $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{69}}$ = $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{70}}$ = $- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{71}}$ = $\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{72}}$ = $- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{73}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{74}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{75}}$ = $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{76}}$ = $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{77}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{78}}$ = $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{79}}$ = $\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III
$\mathbf{B_{80}}$ = $\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32g) Cd III

References

  • M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, The Crystal and Electronic Structures of Cd$_{3}$As$_{2}$, the Three-Dimensional Electronic Analogue of Graphene, Inorg. Chem. 53, 4062–4067 (2014), doi:10.1021/ic403163d.

Prototype Generator

aflow --proto=A2B3_tI160_142_deg_3g --params=$a,c/a,z_{1},x_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: