AFLOW Prototype: A2B4C8D_oC30_65_h_2g_3gh_c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/2EBJ
or
https://aflow.org/p/A2B4C8D_oC30_65_h_2g_3gh_c-001
or
PDF Version
124 Superconductor(YBa$_{2}$Cu$_{4}$O$_{8}$) Structure: A2B4C8D_oC30_65_h_2g_3gh_c-001
Prototype | Ba$_{2}$Cu$_{4}$O$_{8}$Y |
AFLOW prototype label | A2B4C8D_oC30_65_h_2g_3gh_c-001 |
ICSD | none |
Pearson symbol | oC30 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=A2B4C8D_oC30_65_h_2g_3gh_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2c) | Y I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (4g) | Cu I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (4g) | Cu I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Cu II |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Cu II |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (4g) | O I |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (4g) | O I |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}$ | (4g) | O II |
$\mathbf{B_{9}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}$ | (4g) | O II |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ | = | $a x_{6} \,\mathbf{\hat{x}}$ | (4g) | O III |
$\mathbf{B_{11}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ | = | $- a x_{6} \,\mathbf{\hat{x}}$ | (4g) | O III |
$\mathbf{B_{12}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba I |
$\mathbf{B_{13}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba I |
$\mathbf{B_{14}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O IV |
$\mathbf{B_{15}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O IV |