AFLOW Prototype: A2B4CD4_hP66_181_k_2k_f_2k-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/R3D2
or
https://aflow.org/p/A2B4CD4_hP66_181_k_2k_f_2k-001
or
PDF Version
Prototype | Au$_{2}$C$_{4}$CoN$_{4}$ |
AFLOW prototype label | A2B4CD4_hP66_181_k_2k_f_2k-001 |
ICSD | 41197 |
Pearson symbol | hP66 |
Space group number | 181 |
Space group symbol | $P6_422$ |
AFLOW prototype command |
aflow --proto=A2B4CD4_hP66_181_k_2k_f_2k-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{1} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \left(3 z_{1} + 2\right) \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{1} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{3}c \left(3 z_{1} - 2\right) \,\mathbf{\hat{z}}$ | (6f) | Co I |
$\mathbf{B_{7}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{8}}$ | = | $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{9}}$ | = | $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{10}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{11}}$ | = | $y_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{2} + 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{12}}$ | = | $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{13}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{14}}$ | = | $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{15}}$ | = | $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{2} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{16}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{17}}$ | = | $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{2} + 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{18}}$ | = | $x_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{2} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | Au I |
$\mathbf{B_{19}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{20}}$ | = | $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{21}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{22}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{23}}$ | = | $y_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{24}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{25}}$ | = | $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{26}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{27}}$ | = | $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{28}}$ | = | $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{29}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{3} + 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{30}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | C I |
$\mathbf{B_{31}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{32}}$ | = | $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{33}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{4} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{34}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{35}}$ | = | $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{36}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{4} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{37}}$ | = | $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{38}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{39}}$ | = | $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{4} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{40}}$ | = | $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{41}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{42}}$ | = | $x_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{4} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | C II |
$\mathbf{B_{43}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{44}}$ | = | $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{45}}$ | = | $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{5} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{46}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{47}}$ | = | $y_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{48}}$ | = | $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{5} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{49}}$ | = | $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{50}}$ | = | $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{51}}$ | = | $- x_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{5} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{52}}$ | = | $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{53}}$ | = | $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{54}}$ | = | $x_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{5} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | N I |
$\mathbf{B_{55}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{56}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{57}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{6} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{58}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{59}}$ | = | $y_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{60}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{6} + 2\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{61}}$ | = | $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{62}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{63}}$ | = | $- x_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{6} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{64}}$ | = | $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{65}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (12k) | N II |
$\mathbf{B_{66}}$ | = | $x_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{6} - 2\right) \,\mathbf{\hat{z}}$ | (12k) | N II |