Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B4C_oF56_70_e_h_a-001

This structure originally had the label A2B4C_oF56_70_g_h_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/8CBQ
or https://aflow.org/p/A2B4C_oF56_70_e_h_a-001
or PDF Version

Thenardite [Na$_{2}$SO$_{4}$ (V), $H1_{7}$] Structure: A2B4C_oF56_70_e_h_a-001

Picture of Structure; Click for Big Picture
Prototype Na$_{2}$O$_{4}$S
AFLOW prototype label A2B4C_oF56_70_e_h_a-001
Strukturbericht designation $H1_{7}$
Mineral name thenardite
ICSD 2895
Pearson symbol oF56
Space group number 70
Space group symbol $Fddd$
AFLOW prototype command aflow --proto=A2B4C_oF56_70_e_h_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

Ag$_{2}$SO$_{4}$,  Cr$_{2}$SO$_{4}$


  • Na$_{2}$SO$_{4}$ has eight known anhydrous phases. The thenardite phase is reported to be stable between 32$^\circ$C and about 180$^\circ$C (Nord, 1973), however the data reported here was taken on synthetic thenardite at 25$^\circ$C.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}b \,\mathbf{\hat{y}}+\frac{7}{8}c \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{3}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Na I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Na I
$\mathbf{B_{5}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Na I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Na I
$\mathbf{B_{7}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{8}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{9}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{10}}$ = $- \left(x_{3} + y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{11}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{12}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{13}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) O I
$\mathbf{B_{14}}$ = $\left(x_{3} + y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32h) O I

References

  • A. C. Nord, Refinement of the Crystal Structure of Thenardite Na$_{2}$SO$_{4}$ (V), Acta Chem. Scand. 27, 814–822 (1973).

Prototype Generator

aflow --proto=A2B4C_oF56_70_e_h_a --params=$a,b/a,c/a,x_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: