Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B5CD2_oI40_44_2c_abcde_d_e-001

This structure originally had the label A2B5CD2_oI40_44_2c_abcde_d_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/W7BE
or https://aflow.org/p/A2B5CD2_oI40_44_2c_abcde_d_e-001
or PDF Version

Hemimorphite (Zn$_{4}$Si$_{2}$O$_{7}$(OH)$_{2} \cdot$H$_{2}$O, $S2_{2}$) Structure: A2B5CD2_oI40_44_2c_abcde_d_e-001

Picture of Structure; Click for Big Picture
Prototype H$_{2}$O$_{10}$Si$_{2}$Zn$_{4}$
AFLOW prototype label A2B5CD2_oI40_44_2c_abcde_d_e-001
Strukturbericht designation $S2_{2}$
Mineral name hemimorphite
ICSD 100201
Pearson symbol oI40
Space group number 44
Space group symbol $Imm2$
AFLOW prototype command aflow --proto=A2B5CD2_oI40_44_2c_abcde_d_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}$

  • The original (Ito, 1932) determination of this structure did not locate the positions of the hydrogen atoms. (Hill, 1977) were able to do this, so we use the updated structure as the prototype.
  • (Hill, 1977) gives the $z$ coordinates of the atoms on the (2c) sites as 0.0190, 0.0643, and 0.0410, respectively, but this gives unrealistic H-O distances. Examination of the figures and distance tables shows that we should take $z_{2} = 0.190, z_{3} = 0.643$, and $z_{4} = 0.041$, a conclusion also reached by (Downs, 2003) and the ICSD.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{2}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4c) H I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4c) H I
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4c) H II
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4c) H II
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{8}}$ = $z_{5} \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{9}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{10}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{11}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) Si I
$\mathbf{B_{12}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) Si I
$\mathbf{B_{13}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8e) O V
$\mathbf{B_{14}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8e) O V
$\mathbf{B_{15}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8e) O V
$\mathbf{B_{16}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8e) O V
$\mathbf{B_{17}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8e) Zn I
$\mathbf{B_{18}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8e) Zn I
$\mathbf{B_{19}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8e) Zn I
$\mathbf{B_{20}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8e) Zn I

References

  • R. J. Hill, G. V. Gibbs, J. R. Craig, F. K. Ross, and J. M. Williams, A neutron-diffraction study of hemimorphite, Z. Kristallogr. 146, 241–259 (1977), doi:10.1524/zkri.1978.146.16.241.
  • T. Ito and J. West, The Structure of Hemimorphite (H$_{2}$Zn$_{2}$SiO$_{5}$), Z. Kristallogr. 83, 1–8 (1932), doi:10.1524/zkri.1932.83.1.1.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A2B5CD2_oI40_44_2c_abcde_d_e --params=$a,b/a,c/a,z_{1},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},y_{6},z_{6},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9}$

Species:

Running:

Output: