AFLOW Prototype: A2B6CD8_oP34_31_2a_2a2b_a_4a2b-001
This structure originally had the label A2B6CD8_oP34_31_2a_2a2b_a_4a2b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/ZN0T
or
https://aflow.org/p/A2B6CD8_oP34_31_2a_2a2b_a_4a2b-001
or
PDF Version
Prototype | Ca$_{2}$(H$_{2}$O)$_{6}$MgO$_{8}$ |
AFLOW prototype label | A2B6CD8_oP34_31_2a_2a2b_a_4a2b-001 |
Strukturbericht designation | $H4_{11}$ |
ICSD | 24250 |
Pearson symbol | oP34 |
Space group number | 31 |
Space group symbol | $Pmn2_1$ |
AFLOW prototype command |
aflow --proto=A2B6CD8_oP34_31_2a_2a2b_a_4a2b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}$ |
Co(ClO$_{4}$)$_{2}\cdot$6H$_{2}$O, Fe(ClO$_{4}$)$_{2}\cdot$6H$_{2}$O, Mn(ClO$_{4}$)$_{2}\cdot$6H$_{2}$O, Ni(ClO$_{4}$)$_{2}\cdot$6H$_{2}$O, Zn(ClO$_{4}$)$_{2}\cdot$6H$_{2}$O, Mg(BF$_{4}$)$_{2}\cdot$6H$_{2}$O, Co(BF$_{4}$)$_{2}\cdot$6H$_{2}$O, Fe(BF$_{4}$)$_{2}\cdot$6H$_{2}$O, Mn(BF$_{4}$)$_{2}\cdot$6H$_{2}$O, Ni(BF$_{4}$)$_{2}\cdot$6H$_{2}$O, Zn(BF$_{4}$)$_{2}\cdot$6H$_{2}$O
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (2a) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Ca I |
$\mathbf{B_{3}}$ | = | $y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2a) | Ca II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Ca II |
$\mathbf{B_{5}}$ | = | $y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2a) | H I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | H I |
$\mathbf{B_{7}}$ | = | $y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2a) | H II |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | H II |
$\mathbf{B_{9}}$ | = | $y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2a) | Mg I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Mg I |
$\mathbf{B_{11}}$ | = | $y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O I |
$\mathbf{B_{13}}$ | = | $y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O II |
$\mathbf{B_{15}}$ | = | $y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O III |
$\mathbf{B_{17}}$ | = | $y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{18}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | O IV |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4b) | H III |
$\mathbf{B_{20}}$ | = | $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | H III |
$\mathbf{B_{21}}$ | = | $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | H III |
$\mathbf{B_{22}}$ | = | $- x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4b) | H III |
$\mathbf{B_{23}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (4b) | H IV |
$\mathbf{B_{24}}$ | = | $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | H IV |
$\mathbf{B_{25}}$ | = | $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | H IV |
$\mathbf{B_{26}}$ | = | $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (4b) | H IV |
$\mathbf{B_{27}}$ | = | $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (4b) | O V |
$\mathbf{B_{28}}$ | = | $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | O V |
$\mathbf{B_{29}}$ | = | $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | O V |
$\mathbf{B_{30}}$ | = | $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (4b) | O V |
$\mathbf{B_{31}}$ | = | $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (4b) | O VI |
$\mathbf{B_{32}}$ | = | $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | O VI |
$\mathbf{B_{33}}$ | = | $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4b) | O VI |
$\mathbf{B_{34}}$ | = | $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (4b) | O VI |