Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B7C2_oC88_40_abc_2b6c_a3b-001

This structure originally had the label A2B7C2_oC88_40_abc_2b6c_a3b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/CBWE
or https://aflow.org/p/A2B7C2_oC88_40_abc_2b6c_a3b-001
or PDF Version

Rb$_{2}$Mo$_{2}$O$_{7}$ Structure: A2B7C2_oC88_40_abc_2b6c_a3b-001

Picture of Structure; Click for Big Picture
Prototype Mo$_{2}$O$_{7}$Rb$_{2}$
AFLOW prototype label A2B7C2_oC88_40_abc_2b6c_a3b-001
ICSD 249126
Pearson symbol oC88
Space group number 40
Space group symbol $Ama2$
AFLOW prototype command aflow --proto=A2B7C2_oC88_40_abc_2b6c_a3b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) Mo I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) Mo I
$\mathbf{B_{3}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4a) Rb I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{2} \,\mathbf{\hat{z}}$ (4a) Rb I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Mo II
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Mo II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4b) O II
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4b) O II
$\mathbf{B_{11}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4b) Rb II
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4b) Rb II
$\mathbf{B_{13}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4b) Rb III
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4b) Rb III
$\mathbf{B_{15}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4b) Rb IV
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4b) Rb IV
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Mo III
$\mathbf{B_{18}}$ = $- x_{9} \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Mo III
$\mathbf{B_{19}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Mo III
$\mathbf{B_{20}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Mo III
$\mathbf{B_{21}}$ = $x_{10} \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{22}}$ = $- x_{10} \, \mathbf{a}_{1}- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{23}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{24}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) O III
$\mathbf{B_{25}}$ = $x_{11} \, \mathbf{a}_{1}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{26}}$ = $- x_{11} \, \mathbf{a}_{1}- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{27}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{28}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) O IV
$\mathbf{B_{29}}$ = $x_{12} \, \mathbf{a}_{1}+\left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) O V
$\mathbf{B_{30}}$ = $- x_{12} \, \mathbf{a}_{1}- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) O V
$\mathbf{B_{31}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) O V
$\mathbf{B_{32}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) O V
$\mathbf{B_{33}}$ = $x_{13} \, \mathbf{a}_{1}+\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8c) O VI
$\mathbf{B_{34}}$ = $- x_{13} \, \mathbf{a}_{1}- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8c) O VI
$\mathbf{B_{35}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8c) O VI
$\mathbf{B_{36}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8c) O VI
$\mathbf{B_{37}}$ = $x_{14} \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8c) O VII
$\mathbf{B_{38}}$ = $- x_{14} \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8c) O VII
$\mathbf{B_{39}}$ = $\left(x_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8c) O VII
$\mathbf{B_{40}}$ = $- \left(x_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8c) O VII
$\mathbf{B_{41}}$ = $x_{15} \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8c) O VIII
$\mathbf{B_{42}}$ = $- x_{15} \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8c) O VIII
$\mathbf{B_{43}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8c) O VIII
$\mathbf{B_{44}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8c) O VIII

References

  • Z. A. Solodovnikova and S. F. Solodovnikov, Rubidium dimolybdate, Rb$_{2}$Mo$_{2}$O$_{7}$, and caesium dimolybdate, Cs$_{2}$Mo$_{2}$O$_{7}$, Acta Crystallogr. Sect. C 62, i53–i56 (2006), doi:10.1107/S0108270106014880.

Prototype Generator

aflow --proto=A2B7C2_oC88_40_abc_2b6c_a3b --params=$a,b/a,c/a,z_{1},z_{2},y_{3},z_{3},y_{4},z_{4},y_{5},z_{5},y_{6},z_{6},y_{7},z_{7},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15}$

Species:

Running:

Output: