AFLOW Prototype: A2B7C2_oF88_22_k_acefghij_k-001
This structure originally had the label A2B7C2_oF88_22_k_bdefghij_k. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/71CA
or
https://aflow.org/p/A2B7C2_oF88_22_k_acefghij_k-001
or
PDF Version
Prototype | Cd$_{2}$O$_{7}$Re$_{2}$ |
AFLOW prototype label | A2B7C2_oF88_22_k_acefghij_k-001 |
ICSD | none |
Pearson symbol | oF88 |
Space group number | 22 |
Space group symbol | $F222$ |
AFLOW prototype command |
aflow --proto=A2B7C2_oF88_22_k_acefghij_k-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | O II |
$\mathbf{B_{3}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (8e) | O III |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (8e) | O III |
$\mathbf{B_{5}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}$ | (8f) | O IV |
$\mathbf{B_{6}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}$ | (8f) | O IV |
$\mathbf{B_{7}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (8g) | O V |
$\mathbf{B_{8}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (8g) | O V |
$\mathbf{B_{9}}$ | = | $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8h) | O VI |
$\mathbf{B_{10}}$ | = | $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8h) | O VI |
$\mathbf{B_{11}}$ | = | $y_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8i) | O VII |
$\mathbf{B_{12}}$ | = | $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8i) | O VII |
$\mathbf{B_{13}}$ | = | $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | O VIII |
$\mathbf{B_{14}}$ | = | $x_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | O VIII |
$\mathbf{B_{15}}$ | = | $\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16k) | Cd I |
$\mathbf{B_{16}}$ | = | $\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16k) | Cd I |
$\mathbf{B_{17}}$ | = | $\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16k) | Cd I |
$\mathbf{B_{18}}$ | = | $- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16k) | Cd I |
$\mathbf{B_{19}}$ | = | $\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (16k) | Re I |
$\mathbf{B_{20}}$ | = | $\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (16k) | Re I |
$\mathbf{B_{21}}$ | = | $\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (16k) | Re I |
$\mathbf{B_{22}}$ | = | $- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (16k) | Re I |