Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B7C2_oF88_22_k_acefghij_k-001

This structure originally had the label A2B7C2_oF88_22_k_bdefghij_k. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/71CA
or https://aflow.org/p/A2B7C2_oF88_22_k_acefghij_k-001
or PDF Version

Predicted Phase IV Cd$_{2}$Re$_{2}$O$_{7}$ Structure: A2B7C2_oF88_22_k_acefghij_k-001

Picture of Structure; Click for Big Picture
Prototype Cd$_{2}$O$_{7}$Re$_{2}$
AFLOW prototype label A2B7C2_oF88_22_k_acefghij_k-001
ICSD none
Pearson symbol oF88
Space group number 22
Space group symbol $F222$
AFLOW prototype command aflow --proto=A2B7C2_oF88_22_k_acefghij_k-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$

  • Cd$_{2}$Re$_{2}$O$_{7}$ exhibits a number of phases. We will use the notation of (Kapcia, 2020) to describe them:
  • There are many issues with all of these structures (Norman, 2020):
    • Phases II, III, and IV are all close to phase I. If we loosen the tolerance using AFLOW-SYM or FINDSYM the structures are seen to be equivalent to cubic pyrochlore.
    • Using the default tolerance, Phase II and Phase IV are equivalent.
  • Although the default AFLOW tolerance makes this structure equivalent to Phase II, the published structure can be recovered using the command:
  • aflow--proto=A2B7C2_oF88_22_k_acefghij_k:Cd:O:Re --params=a,c/a,z$_{3}$,z$_{4}$,x$_{5}$,x$_{6}$,x$_{7}$,z$_{7}$,x$_{8}$,z$_{8}$ --tolerance=0.001.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) O I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) O II
$\mathbf{B_{3}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (8e) O III
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (8e) O III
$\mathbf{B_{5}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}$ (8f) O IV
$\mathbf{B_{6}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}$ (8f) O IV
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{8}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{9}}$ = $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8h) O VI
$\mathbf{B_{10}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8h) O VI
$\mathbf{B_{11}}$ = $y_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{12}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8i) O VII
$\mathbf{B_{13}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8j) O VIII
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8j) O VIII
$\mathbf{B_{15}}$ = $\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16k) Cd I
$\mathbf{B_{16}}$ = $\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16k) Cd I
$\mathbf{B_{17}}$ = $\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16k) Cd I
$\mathbf{B_{18}}$ = $- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16k) Cd I
$\mathbf{B_{19}}$ = $\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16k) Re I
$\mathbf{B_{20}}$ = $\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16k) Re I
$\mathbf{B_{21}}$ = $\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16k) Re I
$\mathbf{B_{22}}$ = $- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16k) Re I

References

  • K. J. Kapcia, M. Reedyk, M. Hajialamdari, A. Ptok, P. Piekarz, A. Schulz, F. S. Razavi, R. K. Kremer, and A. M. Oleś, Discovery of a low-temperature orthorhombic phase of the Cd$_{2}$Re$_{2}$O$_{7}$ superconductor, Phys. Rev. Res. 2, 033108 (2020), doi:10.1103/PhysRevResearch.2.033108.

Prototype Generator

aflow --proto=A2B7C2_oF88_22_k_acefghij_k --params=$a,b/a,c/a,x_{3},y_{4},z_{5},z_{6},y_{7},x_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10}$

Species:

Running:

Output: