AFLOW Prototype: A2B7C2_oF88_43_b_a3b_b-001
This structure originally had the label A2B7C2_oF88_43_b_a3b_b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/D9YZ
or
https://aflow.org/p/A2B7C2_oF88_43_b_a3b_b-001
or
PDF Version
Prototype | Cu$_{2}$O$_{7}$V$_{2}$ |
AFLOW prototype label | A2B7C2_oF88_43_b_a3b_b-001 |
Mineral name | blossite |
ICSD | 1831 |
Pearson symbol | oF88 |
Space group number | 43 |
Space group symbol | $Fdd2$ |
AFLOW prototype command |
aflow --proto=A2B7C2_oF88_43_b_a3b_b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
blossiteby (Robinson, 1987).
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (8a) | O I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8a) | O I |
$\mathbf{B_{3}}$ | = | $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16b) | Cu I |
$\mathbf{B_{4}}$ | = | $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16b) | Cu I |
$\mathbf{B_{5}}$ | = | $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | Cu I |
$\mathbf{B_{6}}$ | = | $\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | Cu I |
$\mathbf{B_{7}}$ | = | $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{8}}$ | = | $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{9}}$ | = | $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{10}}$ | = | $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{11}}$ | = | $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16b) | O III |
$\mathbf{B_{12}}$ | = | $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16b) | O III |
$\mathbf{B_{13}}$ | = | $- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O III |
$\mathbf{B_{14}}$ | = | $\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O III |
$\mathbf{B_{15}}$ | = | $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16b) | O IV |
$\mathbf{B_{16}}$ | = | $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16b) | O IV |
$\mathbf{B_{17}}$ | = | $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O IV |
$\mathbf{B_{18}}$ | = | $\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O IV |
$\mathbf{B_{19}}$ | = | $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16b) | V I |
$\mathbf{B_{20}}$ | = | $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (16b) | V I |
$\mathbf{B_{21}}$ | = | $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | V I |
$\mathbf{B_{22}}$ | = | $\left(x_{6} + y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | V I |