AFLOW Prototype: A2B7C2_tI44_98_f_acde_f-001
This structure originally had the label A2B7C2_tI44_98_f_bcde_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/XLYF
or
https://aflow.org/p/A2B7C2_tI44_98_f_acde_f-001
or
PDF Version
Prototype | Cd$_{2}$O$_{7}$Re$_{2}$ |
AFLOW prototype label | A2B7C2_tI44_98_f_acde_f-001 |
ICSD | none |
Pearson symbol | tI44 |
Space group number | 98 |
Space group symbol | $I4_122$ |
AFLOW prototype command |
aflow --proto=A2B7C2_tI44_98_f_acde_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4a) | O I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (8c) | O II |
$\mathbf{B_{4}}$ | = | $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8c) | O II |
$\mathbf{B_{5}}$ | = | $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8c) | O II |
$\mathbf{B_{6}}$ | = | $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ | = | $- c z_{2} \,\mathbf{\hat{z}}$ | (8c) | O II |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (8d) | O III |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (8d) | O III |
$\mathbf{B_{9}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8d) | O III |
$\mathbf{B_{10}}$ | = | $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8d) | O III |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (8e) | O IV |
$\mathbf{B_{12}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (8e) | O IV |
$\mathbf{B_{13}}$ | = | $- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | O IV |
$\mathbf{B_{14}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | O IV |
$\mathbf{B_{15}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8f) | Cd I |
$\mathbf{B_{16}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8f) | Cd I |
$\mathbf{B_{17}}$ | = | $\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8f) | Cd I |
$\mathbf{B_{18}}$ | = | $- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8f) | Cd I |
$\mathbf{B_{19}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8f) | Re I |
$\mathbf{B_{20}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8f) | Re I |
$\mathbf{B_{21}}$ | = | $\left(x_{6} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8f) | Re I |
$\mathbf{B_{22}}$ | = | $- \left(x_{6} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8f) | Re I |