Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B7C2_tI44_98_f_acde_f-001

This structure originally had the label A2B7C2_tI44_98_f_bcde_f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/XLYF
or https://aflow.org/p/A2B7C2_tI44_98_f_acde_f-001
or PDF Version

Phase III Cd$_{2}$Re$_{2}$O$_{7}$ Structure: A2B7C2_tI44_98_f_acde_f-001

Picture of Structure; Click for Big Picture
Prototype Cd$_{2}$O$_{7}$Re$_{2}$
AFLOW prototype label A2B7C2_tI44_98_f_acde_f-001
ICSD none
Pearson symbol tI44
Space group number 98
Space group symbol $I4_122$
AFLOW prototype command aflow --proto=A2B7C2_tI44_98_f_acde_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

  • Cd$_{2}$Re$_{2}$O$_{7}$ exhibits a number of phases. We will use the notation of (Kapcia, 2020) to describe them:
  • There are many issues with all of these structures (Norman, 2020):
    • Phases II, III, and IV are all close to phase I. If we loosen the tolerance using AFLOW-SYM or FINDSYM the structures are seen to be equivalent to cubic pyrochlore.
    • Using the default tolerance, Phase II and Phase IV are equivalent.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) O I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) O I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{5}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{6}}$ = $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8d) O III
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8d) O III
$\mathbf{B_{9}}$ = $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8d) O III
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8d) O III
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8e) O IV
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8e) O IV
$\mathbf{B_{13}}$ = $- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O IV
$\mathbf{B_{14}}$ = $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O IV
$\mathbf{B_{15}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) Cd I
$\mathbf{B_{16}}$ = $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) Cd I
$\mathbf{B_{17}}$ = $\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) Cd I
$\mathbf{B_{18}}$ = $- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) Cd I
$\mathbf{B_{19}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) Re I
$\mathbf{B_{20}}$ = $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) Re I
$\mathbf{B_{21}}$ = $\left(x_{6} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) Re I
$\mathbf{B_{22}}$ = $- \left(x_{6} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) Re I

References

  • S.-W. Huang, H.-T. Jeng, J.-Y. Lin, W. J. Chang, J. M. Chen, G. H. Lee, H. Berger, H. D. Yang, and K. S. Liang, Electronic structure of pyrochlore Cd$_{2}$Re$_{2}$O$_{7}$, Journal of Physics: Condensed Matter 21, 195602 (2009), doi:10.1088/0953-8984/21/19/195602.
  • K. J. Kapcia, M. Reedyk, M. Hajialamdari, A. Ptok, P. Piekarz, A. Schulz, F. S. Razavi, R. K. Kremer, and A. M. Oleś, Discovery of a low-temperature orthorhombic phase of the Cd$_{2}$Re$_{2}$O$_{7}$ superconductor, Phys. Rev. Res. 2, 033108 (2020), doi:10.1103/PhysRevResearch.2.033108.

Found in

  • M. R. Norman, Crystal structure of the inversion-breaking metal Cd$_{2}$Re$_{2}$O$_{7}$, Phys. Rev. B 101, 045117 (2020), doi:10.1103/PhysRevB.101.045117.

Prototype Generator

aflow --proto=A2B7C2_tI44_98_f_acde_f --params=$a,c/a,z_{2},x_{3},x_{4},x_{5},x_{6}$

Species:

Running:

Output: