AFLOW Prototype: A2B7_cI54_229_e_afh-001
This structure originally had the label A2B7_cI54_229_e_afh. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/KM4R
or
https://aflow.org/p/A2B7_cI54_229_e_afh-001
or
PDF Version
Prototype | Sb$_{2}$Tl$_{7}$ |
AFLOW prototype label | A2B7_cI54_229_e_afh-001 |
Strukturbericht designation | $L2_{2}$ |
ICSD | 41816 |
Pearson symbol | cI54 |
Space group number | 229 |
Space group symbol | $Im\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A2B7_cI54_229_e_afh-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Tl I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (12e) | Sb I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (12e) | Sb I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{y}}$ | (12e) | Sb I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{y}}$ | (12e) | Sb I |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{z}}$ | (12e) | Sb I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{z}}$ | (12e) | Sb I |
$\mathbf{B_{8}}$ | = | $2 x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{9}}$ | = | $- 2 x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{10}}$ | = | $- 2 x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{11}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{12}}$ | = | $2 x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{13}}$ | = | $- 2 x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{14}}$ | = | $2 x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{15}}$ | = | $2 x_{3} \, \mathbf{a}_{1}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16f) | Tl II |
$\mathbf{B_{16}}$ | = | $2 y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{17}}$ | = | $y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{18}}$ | = | $- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{19}}$ | = | $- 2 y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{20}}$ | = | $y_{4} \, \mathbf{a}_{1}+2 y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{21}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{22}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{23}}$ | = | $- y_{4} \, \mathbf{a}_{1}- 2 y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24h) | Tl III |
$\mathbf{B_{24}}$ | = | $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+2 y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Tl III |
$\mathbf{B_{25}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Tl III |
$\mathbf{B_{26}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Tl III |
$\mathbf{B_{27}}$ | = | $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- 2 y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ | (24h) | Tl III |