AFLOW Prototype: A2B7_oC36_65_gj_achipq-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/3WXK
or
https://aflow.org/p/A2B7_oC36_65_gj_achipq-001
or
PDF Version
Prototype | Ge$_{2}$Li$_{7}$ |
AFLOW prototype label | A2B7_oC36_65_gj_achipq-001 |
ICSD | 42063 |
Pearson symbol | oC36 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=A2B7_oC36_65_gj_achipq-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}$ |
Li$_{7}$Sn$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Li I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2c) | Li II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Ge I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Ge I |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Li III |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Li III |
$\mathbf{B_{7}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ | = | $b y_{5} \,\mathbf{\hat{y}}$ | (4i) | Li IV |
$\mathbf{B_{8}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ | = | $- b y_{5} \,\mathbf{\hat{y}}$ | (4i) | Li IV |
$\mathbf{B_{9}}$ | = | $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Ge II |
$\mathbf{B_{10}}$ | = | $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Ge II |
$\mathbf{B_{11}}$ | = | $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}$ | (8p) | Li V |
$\mathbf{B_{12}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}$ | (8p) | Li V |
$\mathbf{B_{13}}$ | = | $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}$ | (8p) | Li V |
$\mathbf{B_{14}}$ | = | $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}$ | (8p) | Li V |
$\mathbf{B_{15}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8q) | Li VI |
$\mathbf{B_{16}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8q) | Li VI |
$\mathbf{B_{17}}$ | = | $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8q) | Li VI |
$\mathbf{B_{18}}$ | = | $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8q) | Li VI |