AFLOW Prototype: A2BC2_mP20_11_4e_2e_4e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/0Y6Q
or
https://aflow.org/p/A2BC2_mP20_11_4e_2e_4e-001
or
PDF Version
Prototype | C$_{2}$HO$_{2}$ |
AFLOW prototype label | A2BC2_mP20_11_4e_2e_4e-001 |
Mineral name | squaric acid |
CCDC | 1194137 |
Pearson symbol | mP20 |
Space group number | 11 |
Space group symbol | $P2_1/m$ |
AFLOW prototype command |
aflow --proto=A2BC2_mP20_11_4e_2e_4e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C II |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C III |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C III |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C IV |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | C IV |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | H I |
$\mathbf{B_{10}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | H I |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | H II |
$\mathbf{B_{12}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | H II |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O I |
$\mathbf{B_{14}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O I |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O II |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O II |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O III |
$\mathbf{B_{18}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O III |
$\mathbf{B_{19}}$ | = | $x_{10} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O IV |
$\mathbf{B_{20}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2e) | O IV |