Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2_tI20_79_c_2a_c-001

This structure originally had the label A2BC2_tI20_79_c_2a_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/T892
or https://aflow.org/p/A2BC2_tI20_79_c_2a_c-001
or PDF Version

TlZn$_{2}$Sb$_{2}$ Structure: A2BC2_tI20_79_c_2a_c-001

Picture of Structure; Click for Big Picture
Prototype Sb$_{2}$TlZn$_{2}$
AFLOW prototype label A2BC2_tI20_79_c_2a_c-001
ICSD 76499
Pearson symbol tI20
Space group number 79
Space group symbol $I4$
AFLOW prototype command aflow --proto=A2BC2_tI20_79_c_2a_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

  • Space group $I4$ #79 allows us to make an arbitrary choice for the origin of the $z$-axes, which we used to move the Tl-I atom to the origin. Our original version of this structure (Hicks, 2019) did not do this correctly. We now present the correct structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Tl I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Tl II
$\mathbf{B_{3}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) Sb I
$\mathbf{B_{4}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) Sb I
$\mathbf{B_{5}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) Sb I
$\mathbf{B_{6}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8c) Sb I
$\mathbf{B_{7}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{8}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{9}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Zn I
$\mathbf{B_{10}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Zn I

References

  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars, TlZn$_{2}$Sb$_{2}$ Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Prototype Generator

aflow --proto=A2BC2_tI20_79_c_2a_c --params=$a,c/a,z_{1},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: