AFLOW Prototype: A2BC2_tI40_122_e_d_e-001
This structure originally had the label A2BC2_tI40_122_e_d_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/05M4
or
https://aflow.org/p/A2BC2_tI40_122_e_d_e-001
or
PDF Version
Prototype | C$_{2}$HgN$_{2}$ |
AFLOW prototype label | A2BC2_tI40_122_e_d_e-001 |
Strukturbericht designation | $F1_{1}$ |
Mineral name | mercury cyanide |
ICSD | 412315 |
Pearson symbol | tI40 |
Space group number | 122 |
Space group symbol | $I\overline{4}2d$ |
AFLOW prototype command |
aflow --proto=A2BC2_tI40_122_e_d_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8d) | Hg I |
$\mathbf{B_{2}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8d) | Hg I |
$\mathbf{B_{3}}$ | = | $- \left(x_{1} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8d) | Hg I |
$\mathbf{B_{4}}$ | = | $\left(x_{1} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8d) | Hg I |
$\mathbf{B_{5}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{6}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{7}}$ | = | $- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{8}}$ | = | $\left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{9}}$ | = | $\left(y_{2} - z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{10}}$ | = | $- \left(y_{2} + z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{11}}$ | = | $\left(- x_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{12}}$ | = | $\left(x_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | C I |
$\mathbf{B_{13}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{14}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{15}}$ | = | $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{16}}$ | = | $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{17}}$ | = | $\left(y_{3} - z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{18}}$ | = | $- \left(y_{3} + z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{19}}$ | = | $\left(- x_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | N I |
$\mathbf{B_{20}}$ | = | $\left(x_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | N I |