Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2_tP10_127_g_a_h-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/5SWM
or https://aflow.org/p/A2BC2_tP10_127_g_a_h-002
or PDF Version

Mo$_{2}$FeB$_{2}$ Structure: A2BC2_tP10_127_g_a_h-002

Picture of Structure; Click for Big Picture
Prototype B$_{2}$FeMo$_{2}$
AFLOW prototype label A2BC2_tP10_127_g_a_h-002
ICSD 5431
Pearson symbol tP10
Space group number 127
Space group symbol $P4/mbm$
AFLOW prototype command aflow --proto=A2BC2_tP10_127_g_a_h-002
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$

Other compounds with this structure

Al$_{2}$CrB$_{2}$,  Al$_{2}$FeB$_{2}$,  Al$_{2}$NiB$_{2}$,  Ce$_{2}$InPd$_{2}$,  Dy$_{2}$CdPd$_{2}$,  Dy$_{2}$InPd$_{2}$,  Er$_{2}$CdPd$_{2}$,  Er$_{2}$InPd$_{2}$,  Gd$_{2}$CdPd$_{2}$,  Gd$_{2}$InPd$_{2}$,  Ho$_{2}$CdPd$_{2}$,  Ho$_{2}$InNi$_{2}$,  Ho$_{2}$InPd$_{2}$,  La$_{2}$InCu$_{2}$,  La$_{2}$InPd$_{2}$,  Lu$_{2}$CdPd$_{2}$,  Lu$_{2}$InPd$_{2}$,  Mo$_{2}$CrB$_{2}$,  Mo$_{2}$NiB$_{2}$,  Nb$_{2}$FeB$_{2}$,  Nd$_{2}$InPd$_{2}$,  Ni$_{2}$SnZr$_{2}$,  Pr$_{2}$CdPd$_{2}$,  Pr$_{2}$InPd$_{2}$,  Sm$_{2}$CdPd$_{2}$,  Sm$_{2}$InPd$_{2}$,  Ta$_{2}$FeB$_{2}$,  Tb$_{2}$CdPd$_{2}$,  Tb$_{2}$InPd$_{2}$,  Th$_{2}$InPd$_{2}$,  Ti$_{2}$CrB$_{2}$,  Ti$_{2}$FeB$_{2}$,  Ti$_{2}$NiB$_{2}$,  Tm$_{2}$CdPd$_{2}$,  Tm$_{2}$InCu$_{2}$,  Tm$_{2}$InPd$_{2}$,  U$_{2}$PbRh$_{2}$,  Yb$_{2}$PbPt$_{2}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Fe I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (2a) Fe I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) B I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4g) B I
$\mathbf{B_{5}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (4g) B I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (4g) B I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Mo I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Mo I
$\mathbf{B_{9}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Mo I
$\mathbf{B_{10}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Mo I

References

  • W. Rieger, H. Nowotny, and F. Benesovsky, Die Kristallstruktur von Mo$_{2}$FeB$_{2}$, Monatsh. Chem. 95, 1502–1503 (1964), doi:10.1007/BF00901704.

Found in

  • Y. Jian, Z. Huang, X. Liu, and J. Xing, Comparative investigation on the stability, electronic structures and mechanical properties of Mo$_{2}$FeB$_{2}$ and Mo$_{2}$NiB$_{2}$ ternary borides by first-principles calculations, Results in Physics 15, 102698 (2019), doi:10.1016/j.rinp.2019.102698.

Prototype Generator

aflow --proto=A2BC2_tP10_127_g_a_h --params=$a,c/a,x_{2},x_{3}$

Species:

Running:

Output: