AFLOW Prototype: A2BC2_tP10_127_g_a_h-002
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/5SWM
or
https://aflow.org/p/A2BC2_tP10_127_g_a_h-002
or
PDF Version
Prototype | B$_{2}$FeMo$_{2}$ |
AFLOW prototype label | A2BC2_tP10_127_g_a_h-002 |
ICSD | 5431 |
Pearson symbol | tP10 |
Space group number | 127 |
Space group symbol | $P4/mbm$ |
AFLOW prototype command |
aflow --proto=A2BC2_tP10_127_g_a_h-002
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$ |
Al$_{2}$CrB$_{2}$, Al$_{2}$FeB$_{2}$, Al$_{2}$NiB$_{2}$, Ce$_{2}$InPd$_{2}$, Dy$_{2}$CdPd$_{2}$, Dy$_{2}$InPd$_{2}$, Er$_{2}$CdPd$_{2}$, Er$_{2}$InPd$_{2}$, Gd$_{2}$CdPd$_{2}$, Gd$_{2}$InPd$_{2}$, Ho$_{2}$CdPd$_{2}$, Ho$_{2}$InNi$_{2}$, Ho$_{2}$InPd$_{2}$, La$_{2}$InCu$_{2}$, La$_{2}$InPd$_{2}$, Lu$_{2}$CdPd$_{2}$, Lu$_{2}$InPd$_{2}$, Mo$_{2}$CrB$_{2}$, Mo$_{2}$NiB$_{2}$, Nb$_{2}$FeB$_{2}$, Nd$_{2}$InPd$_{2}$, Ni$_{2}$SnZr$_{2}$, Pr$_{2}$CdPd$_{2}$, Pr$_{2}$InPd$_{2}$, Sm$_{2}$CdPd$_{2}$, Sm$_{2}$InPd$_{2}$, Ta$_{2}$FeB$_{2}$, Tb$_{2}$CdPd$_{2}$, Tb$_{2}$InPd$_{2}$, Th$_{2}$InPd$_{2}$, Ti$_{2}$CrB$_{2}$, Ti$_{2}$FeB$_{2}$, Ti$_{2}$NiB$_{2}$, Tm$_{2}$CdPd$_{2}$, Tm$_{2}$InCu$_{2}$, Tm$_{2}$InPd$_{2}$, U$_{2}$PbRh$_{2}$, Yb$_{2}$PbPt$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Fe I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (2a) | Fe I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (4g) | B I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (4g) | B I |
$\mathbf{B_{5}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (4g) | B I |
$\mathbf{B_{6}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (4g) | B I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Mo I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Mo I |
$\mathbf{B_{9}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Mo I |
$\mathbf{B_{10}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Mo I |