Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2_tP20_105_f_bc_2d-001

This structure originally had the label A2BC2_tP20_105_f_ac_2e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/W96U
or https://aflow.org/p/A2BC2_tP20_105_f_bc_2d-001
or PDF Version

BaGe$_{2}$As$_{2}$ Structure: A2BC2_tP20_105_f_bc_2d-001

Picture of Structure; Click for Big Picture
Prototype As$_{2}$BaGe$_{2}$
AFLOW prototype label A2BC2_tP20_105_f_bc_2d-001
ICSD 26417
Pearson symbol tP20
Space group number 105
Space group symbol $P4_2mc$
AFLOW prototype command aflow --proto=A2BC2_tP20_105_f_bc_2d-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

Other compounds with this structure

BaGe$_{2}$P$_{2}$


  • Our previous listing of this structure (Hicks, 2017) misplaced the $z$ coordinates of the Ba II and Ge II atoms by $c/2$. We have corrected this here.
  • Space group $P4_{2}mc$ #105 allows an arbitary placement of the origin of the $z$-axis. Here we use this freedom to set $z_{1} = 0$ for the Ba-I atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2b) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ba I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4d) Ge II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (4d) Ge II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ge II
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Ge II
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{15}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{16}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{19}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{20}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) As I

References

  • B. Eisenmann and H. Schäfer, Zintlphasen mit binären Anionen: Zur Kenntnis von BaGe$_{2}$P$_{2}$ und BaGe$_{2}$As$_{2}$ / Zintl Phases with Binary Anions: BaGe$_{2}$P$_{2}$ and BaGe$_{2}$As$_{2}$, Z. Naturforsch. B 36, 415–419 (1981), doi:10.1515/znb-1981-0403.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2BC2_tP20_105_f_bc_2d --params=$a,c/a,z_{1},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: