AFLOW Prototype: A2BC4_tI28_141_c_b_h-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/763J
or
https://aflow.org/p/A2BC4_tI28_141_c_b_h-001
or
PDF Version
Prototype | Cr$_{2}$CuO$_{4}$ |
AFLOW prototype label | A2BC4_tI28_141_c_b_h-001 |
ICSD | 84378 |
Pearson symbol | tI28 |
Space group number | 141 |
Space group symbol | $I4_1/amd$ |
AFLOW prototype command |
aflow --proto=A2BC4_tI28_141_c_b_h-001
--params=$a, \allowbreak c/a, \allowbreak y_{3}, \allowbreak z_{3}$ |
CdMn$_{2}$O$_{4}$, CoMn$_{2}$O$_{4}$, CuMn$_{2}$O$_{4}$, FeCr$_{2}$S$_{4}$, GeCo$_{2}$O$_{4}$, MgMn$_{2}$O$_{4}$, NiCr$_{2}$O$_{4}$, ZnMn$_{2}$O$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (4b) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (4b) | Cu I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (8c) | Cr I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8c) | Cr I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | Cr I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | Cr I |
$\mathbf{B_{7}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{8}}$ | = | $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{9}}$ | = | $z_{3} \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{10}}$ | = | $z_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{11}}$ | = | $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{12}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{13}}$ | = | $- z_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | O I |
$\mathbf{B_{14}}$ | = | $- z_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16h) | O I |