Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC4_tI28_141_c_b_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/763J
or https://aflow.org/p/A2BC4_tI28_141_c_b_h-001
or PDF Version

CuCr$_{2}$O$_{4}$ Structure: A2BC4_tI28_141_c_b_h-001

Picture of Structure; Click for Big Picture
Prototype Cr$_{2}$CuO$_{4}$
AFLOW prototype label A2BC4_tI28_141_c_b_h-001
ICSD 84378
Pearson symbol tI28
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=A2BC4_tI28_141_c_b_h-001
--params=$a, \allowbreak c/a, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

CdMn$_{2}$O$_{4}$,  CoMn$_{2}$O$_{4}$,  CuMn$_{2}$O$_{4}$,  FeCr$_{2}$S$_{4}$,  GeCo$_{2}$O$_{4}$,  MgMn$_{2}$O$_{4}$,  NiCr$_{2}$O$_{4}$,  ZnMn$_{2}$O$_{4}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (4b) Cu I
$\mathbf{B_{2}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (4b) Cu I
$\mathbf{B_{3}}$ = $0$ = $0$ (8c) Cr I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (8c) Cr I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) Cr I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) Cr I
$\mathbf{B_{7}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{8}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{9}}$ = $z_{3} \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{10}}$ = $z_{3} \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{11}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{12}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{13}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I
$\mathbf{B_{14}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16h) O I

References

  • O. Crottaz, F. Kubel, and H. Schmid, Jumping crystals of the spinels NiCr$_{2}$O$_{4}$ and CuCr$_{2}$O$_{4}$, J. Mater. Chem. 7, 143–146 (1997), doi:10.1039/A604758K.

Found in

  • I. Naik, S. Mohanta, and S. D. Kaushik, Structural and magnetic properties of tetragonal distorted spinel CuMn$_{2}$O$_{4}$ prepared by single step method, AIP Conf. Proc. 1832, 130013 (2017), doi:10.1063/1.4980733.

Prototype Generator

aflow --proto=A2BC4_tI28_141_c_b_h --params=$a,c/a,y_{3},z_{3}$

Species:

Running:

Output: