AFLOW Prototype: A2BC_oC16_67_ag_b_g-001
This structure originally had the label A2BC_oC16_67_ag_b_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/08UR
or
https://aflow.org/p/A2BC_oC16_67_ag_b_g-001
or
PDF Version
Prototype | Al$_{2}$CuIr |
AFLOW prototype label | A2BC_oC16_67_ag_b_g-001 |
ICSD | 167666 |
Pearson symbol | oC16 |
Space group number | 67 |
Space group symbol | $Cmme$ |
AFLOW prototype command |
aflow --proto=A2BC_oC16_67_ag_b_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$ |
--params
) specified in their corresponding CIF files. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}$ | (4a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}$ | (4a) | Al I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4b) | Cu I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4b) | Cu I |
$\mathbf{B_{5}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4g) | Al II |
$\mathbf{B_{6}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4g) | Al II |
$\mathbf{B_{7}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4g) | Ir I |
$\mathbf{B_{8}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (4g) | Ir I |