Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC_oC16_67_ag_b_g-001

This structure originally had the label A2BC_oC16_67_ag_b_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/08UR
or https://aflow.org/p/A2BC_oC16_67_ag_b_g-001
or PDF Version

Al$_{2}$CuIr Structure: A2BC_oC16_67_ag_b_g-001

Picture of Structure; Click for Big Picture
Prototype Al$_{2}$CuIr
AFLOW prototype label A2BC_oC16_67_ag_b_g-001
ICSD 167666
Pearson symbol oC16
Space group number 67
Space group symbol $Cmme$
AFLOW prototype command aflow --proto=A2BC_oC16_67_ag_b_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

  • We have shifted the origin to move the Al-I atoms to the (4a) Wyckoff positions.
  • Al$_{2}$CuIr (A2BC_oC16_67_ag_b_g) and CuHoP$_{2}$ (ABC2_oC16_67_b_g_ag) have similar AFLOW prototype labels (i.e., same symmetry and set of Wyckoff positions with different stoichiometry labels due to alphabetic ordering of atomic species). They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}$ (4a) Al I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4b) Cu I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4b) Cu I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4g) Al II
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4g) Al II
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4g) Ir I
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4g) Ir I

References

  • L. Meshi, V. Ezersky, D. Kapush, and B. Grushko, Crystal Structure of the Al$_{2}$CuIr Phase, J. Alloys Compd. 496, 208–211 (2010), doi:10.1016/j.jallcom.2010.02.129.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2BC_oC16_67_ag_b_g --params=$a,b/a,c/a,z_{3},z_{4}$

Species:

Running:

Output: