Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC_oP16_53_eh_ab_g-001

This structure originally had the label A2BC_oP16_53_eh_ab_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/DCYY
or https://aflow.org/p/A2BC_oP16_53_eh_ab_g-001
or PDF Version

NH$_{4}$HF$_{2}$ ($F5_{8}$) Structure: A2BC_oP16_53_eh_ab_g-001

Picture of Structure; Click for Big Picture
Prototype F$_{2}$H$_{5}$N
AFLOW prototype label A2BC_oP16_53_eh_ab_g-001
Strukturbericht designation $F5_{8}$
ICSD 28893
Pearson symbol oP16
Space group number 53
Space group symbol $Pmna$
AFLOW prototype command aflow --proto=A2BC_oP16_53_eh_ab_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak y_{5}, \allowbreak z_{5}$

  • This structure was first investigated by (Pauling, 1933) and assigned Strukturbericht designation $F5_{8}$ by (Gottfried, 1937). It was reinvestigated by (Rogers, 1940). Neither paper notes the positions of the hydrogen atoms, but under the assumption that the structure is similar to KHF$_{2}$ ($F5_{2}$), (Downs, 2003) puts some of them between pairs of fluorine atoms. The remaining hydrogen atoms are part of the NH$_{4}$ radical.
  • The crystal structure was given in the $Pman$ setting of space group #53. We used FINDSYM to change it to the standard $Pmna$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) H I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) H I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2b) H II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) H II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}$ (4e) F I
$\mathbf{B_{6}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (4e) F I
$\mathbf{B_{8}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4e) F I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4g) NH I
$\mathbf{B_{10}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4g) NH I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4g) NH I
$\mathbf{B_{12}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4g) NH I
$\mathbf{B_{13}}$ = $y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4h) F II
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) F II
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4h) F II
$\mathbf{B_{16}}$ = $- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (4h) F II

References

  • M. T. Rogers and L. Helmholz, A Redetermination of the Parameters in Ammonium Bifluoride, J. Am. Chem. Soc. 62, 1533–1536 (1940), doi:10.1021/ja01863a057.
  • L. Pauling, The Crystal Structure of Ammonium Hydrogen Fluoride, NH$_{4}$HF$_{2}$, Z. Kristallogr. 85, 380–391 (1933), doi:10.1524/zkri.1933.85.1.380.
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A2BC_oP16_53_eh_ab_g --params=$a,b/a,c/a,x_{3},y_{4},y_{5},z_{5}$

Species:

Running:

Output: