Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_hR18_148_2f_f-001

This structure originally had the label A2B_hR18_148_2f_f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/8GMP
or https://aflow.org/p/A2B_hR18_148_2f_f-001
or PDF Version

β-PdCl$_{2}$ Structure: A2B_hR18_148_2f_f-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$Pd
AFLOW prototype label A2B_hR18_148_2f_f-001
ICSD 404624
Pearson symbol hR18
Space group number 148
Space group symbol $R\overline{3}$
AFLOW prototype command aflow --proto=A2B_hR18_148_2f_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{3}}$ = $y_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{5}}$ = $- z_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{6}}$ = $- y_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6f) Cl I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{8}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{9}}$ = $y_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{11}}$ = $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{12}}$ = $- y_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6f) Cl II
$\mathbf{B_{13}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I
$\mathbf{B_{14}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I
$\mathbf{B_{15}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I
$\mathbf{B_{16}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I
$\mathbf{B_{17}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I
$\mathbf{B_{18}}$ = $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6f) Pd I

References

  • D. B. Dell'Amico, F. Calderazzo, F. Marchetti, and S. Ramello, Molecular Structure of [Pd$_{6}$Cl$_{12}$] in Single Crystals Chemically Grown at Room Temperature, Angew. Chem. Int. Ed. 35, 1131–1133 (1996), doi:10.1002/anie.199613311.
  • J.Evers, W. Beck, M. Göbel, S. Jakob, P. Mayer, G. Oehlinger, M. Rotter, and T. Klapötke, The Structures of δ-PdCl$_{2}$ and γ-PdCl$_{2}$: Phases with Negative Thermal Expansion in One Direction, Angew. Chem. Int. Ed. 49, 5677–5682 (2010), doi:10.1002/anie.201000680.
  • P. Villars and K. Cenzual, eds., Structure Types (Springer, Berlin, Heidelberg, 2010), Landolt-Börnstein – Group III Condensed Matter, vol. 43A8, chap. Part 8: SpaceGroups (156) P3m1 – (148) R-3, doi:10.1007/978-3-540-70892-6_423.

Prototype Generator

aflow --proto=A2B_hR18_148_2f_f --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: