AFLOW Prototype: A2B_oC24_64_ef_f-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/370K
or
https://aflow.org/p/A2B_oC24_64_ef_f-001
or
PDF Version
Prototype | Sb$_{2}$Sm |
AFLOW prototype label | A2B_oC24_64_ef_f-001 |
ICSD | 43029 |
Pearson symbol | oC24 |
Space group number | 64 |
Space group symbol | $Cmce$ |
AFLOW prototype command |
aflow --proto=A2B_oC24_64_ef_f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}$ |
CeSb$_{2}$, LaSb$_{2}$, NbSb$_{2}$, NdSb$_{2}$, PrSb$_{2}$, TbSb$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- \left(y_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | Sb I |
$\mathbf{B_{2}}$ | = | $\left(y_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8e) | Sb I |
$\mathbf{B_{3}}$ | = | $\left(y_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8e) | Sb I |
$\mathbf{B_{4}}$ | = | $- \left(y_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8e) | Sb I |
$\mathbf{B_{5}}$ | = | $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (8f) | Sb II |
$\mathbf{B_{6}}$ | = | $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Sb II |
$\mathbf{B_{7}}$ | = | $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Sb II |
$\mathbf{B_{8}}$ | = | $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (8f) | Sb II |
$\mathbf{B_{9}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8f) | Sm I |
$\mathbf{B_{10}}$ | = | $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Sm I |
$\mathbf{B_{11}}$ | = | $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | Sm I |
$\mathbf{B_{12}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (8f) | Sm I |