AFLOW Prototype: A2B_oF24_70_e_a-001
This structure originally had the label A2B_oF24_70_e_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/KN7L
or
https://aflow.org/p/A2B_oF24_70_e_a-001
or
PDF Version
Prototype | Si$_{2}$Ti |
AFLOW prototype label | A2B_oF24_70_e_a-001 |
Strukturbericht designation | $C54$ |
ICSD | 1089 |
Pearson symbol | oF24 |
Space group number | 70 |
Space group symbol | $Fddd$ |
AFLOW prototype command |
aflow --proto=A2B_oF24_70_e_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}$ |
RuAl$_{2}$, RuGa$_{2}$, TiGe$_{2}$, ZrSn$_{2}$
Nowotny chimney-ladder structure(Pearson, 1970), T$_{n}$X$_{m}$, where
Tis a transition metal,
Xis a row III or IV metal (or semiconductor), and $1.25 \le m/n {<} 2$. The transition metal atoms are arranged similarly to the atoms in the $\beta$–Sn ($A5$).
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8a) | Ti I |
$\mathbf{B_{2}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ | = | $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}b \,\mathbf{\hat{y}}+\frac{7}{8}c \,\mathbf{\hat{z}}$ | (8a) | Ti I |
$\mathbf{B_{3}}$ | = | $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Si I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16e) | Si I |
$\mathbf{B_{5}}$ | = | $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Si I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16e) | Si I |